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Abstract 

A novel class of plant hormones called strigolactones (SLs) is essential for 
protecting plants from environmental stressors. Plants can respond and reduce the 
effect on crop output when these conditions activate several hormonal pathways. 
Plants rely on phytohormone to help them withstand abiotic challenges such as 
salinity, heavy metal, light stress, heat stress, food deficit, and drought. SLs are a 
class of hormones that originate in plants and are derived from carotenoids. They 
are known as new phytohormones and are crucial in controlling plant metabolism, 
growth, and development. To improve stress tolerance, one approach is to alter 
SLs genetically. Native plant hormones, on the other hand, play a key role in 
controlling development, growth, and nutrient distribution as well as in 
coordinating responses to altered surroundings. Plants respond to environmental 
signals like food shortage and canopy shadow by fine-tuning their behaviors and 
architecture via hormonal interactions. Much has changed in our knowledge of SL 
production, signaling, and transport since they were found. This article delves into 
the ins and outs of SLs' biosynthesis, and perception, and how they play a crucial 
part in helping plants survive in harsh environments. 

Keywords: Strigolactones, Heavy metal, Drought, Phytohormone, Environmental 

stressors 

Introduction For immobile plants, abiotic environmental factors often affect 

their growth and development (Zhang et al., 2022). Abiotic stress can be defined 
as the negative impact of non-living factors in a plant's environment. This can 
result in various responses, ranging from changes that affect biological processes 
such as gene expression and cell metabolism, to growth and development (Zhang 
et al., 2023). Abiotic stress can cause different responses. Examples include 
extreme temperature, drought, flooding, salinity, metal, and nutrient stress(Zhang 
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et al.,2020).It hasbeen estimated that abiotic stress causes a 70% decrease in crop 
production yield in several commercially significant crops, resulting in plants 
executing only 30% of their genetic makeup in yield(Fahad etal., 2017).Climate 
change and crop yield models predict major crop productivity loss (Figure 1.), 

including rice, wheat, and maize, with serious consequences for food 
security(Tigchelaar et al., 2018).The salinity levels in irrigated lands have 
increased by 37% between 1990 and 2013(Ghassemi et al., 1995; Qadir et al., 
2014).Changes in precipitation patterns and increased evapotranspiration due to 
global warming have led to more frequent and severe drought stress(Dai, 2011).A 
recent meta-analysis study projects a global average temperature increase of 2 to 
4.9°C by 2100 (Raftery et al., 2017).Contamination of arable lands with heavy 
metals is causing serious risks to human health and limiting crop 
productivity(Rehman et al., 2018). 

Signaling elicitors that target phytohormones are crucial for metabolic 
engineering in producing abiotic stress-tolerant crops(Banerjee and 
Roychoudhury, 2017; Faizan et al.,2018). 

 

(Abiotic stress causes various effects on plants such as membrane injury, osmotic 
stress, denaturation of protein, DNA damage, and Decline in plant growth & 
productivity). 

Role of strigolactones in plants 

Strigolactones (SLs) are a relatively new type of plant growth regulator (PGR) that 
aid plants in surviving harsh conditions and strengthening their signaling network 
(Smith and Li, 2014).SLs were first discovered in 1966 as a stimulant for Striga 
lutea, also known as witchweed. These compounds were found in root exudates of 
Gossypium hirsutum plants and were responsible for inciting germination in 
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plants(Cook et al., 1996).This group of PGRs is known as SLs. The name witchweed 
comes from the Latin word striga, and it belongs to the Broomrape 
(Orobanchaceae) family(Faizanet al., 2020).The term 'lactone' in this PGR group 
refers to the two chemical rings that display stereo-chemical composition(Smith, 
2014).Over time, scientists have discovered additional roles of SLs, such as aiding 
hyphal branching, facilitating plant interaction with arbuscular mycorrhizal fungi, 
and enabling other symbiotic associations(Faizan et al., 2020; Akiyama et al., 
2005).SLs have diverse roles in plant development, including shoot enlargement, 
photomorphogenesis, root branching, and leaf senescence(Faizan et al., 2022).The 
vital role of strigolactones (SLs) in enhancing abiotic stress tolerance has been 
reported in recent years through various genetic, biochemical, and physiological 
studies. For instance, the exogenous application of SL analog GR24 to drought-
stressed crab apples(Xu et al., 2023), and salt-stressed ornamental sunflower 
seedlings(Ahsan et al., 2022),Increased leaf chlorophyll content, photosynthetic 
activity, and antioxidant metabolism while inhibiting ROS and MDA production. 
Recent reviews(Kleman and Matusova, 2023; Soliman et al., 2022; Bhoi et al., 2021) 
that the involvement of SLs in plant responses to deficiencies in soil nutrients, 
drought, extreme temperatures, salinity, and soil toxicities is significant. 
Additionally, SLs play a crucial role in plant communications with the surrounding 
microbiome to exploit it for survival strategies in extreme environments. They aid 
in adaptation and coping with stress and act as a shield in reprogramming 
pathways, growth, and maintaining transpiration balance (Bhoi et al., 2021; Cooper 
et al., 2018). The salt-tolerant phenotype that is established in SL-deficient plant 
signaling occurs in max3, max4, and max2 during the vegetative and germinative 
states(Ha et al., 2014).Decreasing the endogenous SL level under salinity stress in 
the max2 mutant shows reduced germination ability in plants(Bu et al., 2014). In 
salinity stress, SL has a positive AM symbiotic effect on lettuce roots along with a 
more efficient photosystem II activity(Aroca et al., 2013).Under oxidative and 
salinity stress, an increase in SL level leads to various ameliorative functions that 
help mitigate the effects of the stresses. In the presence of SLs, the symbiotic 
relationship strengthens, aiding in plant nutrient uptake, improving physiological 
characteristics, increasing photosynthetic ability, and enhancing many other 
traits(Ruiz-Lozano et al., 2016). Due to lower amounts of endogenous SLs and their 
volatility, several SL analogs such as GR5, GR7, and GR24 have been synthesized 
chemically, with GR24 displaying the best results(Koltai, 2013).Exogenous 
application of GR24 in Arabidopsis thaliana can enhance salinity tolerance. It is 
widely used to investigate how SLs affect crop growth and development under 
both natural and stress conditions(Ha et al., 2014).Oxidative stress-responsive 
plants that exhibit stomatal perforation and closure respond positively to 
exogenous SL application(Lv et al., 2018).There is very little experimental 
evidence to show the impact of SLs on plants, specifically the response of S. 
lycopersicum to oxidative and salinity stress. S. lycopersicum has high levels of 
antioxidant compounds, which are significantly affected when exposed to salinity 
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stress((Faizan et al., 2021). The morphology, physiology, yield, biosynthesis, and 
biomass content ofS. lycopersicumis significantly decreased(Zhang et al., 2016; 
Massaretto et al., 2018).It also identifies and classifies the SLs that play a role in 
stress resistance since many ecological microbiomes are yet to be 
explained(Soliman et al., 2022). 

Fig- 

2Role of SLs in plant architectures 

Table :1 

Effects of SLs on plant functions in different plant species. 

S.No. Plant species Response References 

2 Arabidopsis 
thaliana 

lateral root formation and root-hair 
elongation 

(Kapulnik 
et al., 2011) 

3 Arabidopsis 
thaliana 

positively regulates drought and 
high salinity responses 

(Ha et al., 
2014). 

4 Maize Increase photosynthetic pigment (Sattar et 
al., 2022) 

5 Wheat reducing the electrolyte leakage, 
H2O2, and MDA or increasing the 
grain yield 

(Mehrabi et 
al., 2024) 

6 

Chili pepper 

 

improvement in nitrogen, 
phosphorus, and potassium 
concentration in leaves 

(Danish et 
al., 
2024)39) 

7 Arabidopsis 
thaliana 

Increases H2O2 and nitric oxide 
content 

(Lv et al., 
2018). 
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8 Arabidopsis 
thaliana 

Provide resistance against 
bacterial infection 

(Stes et al., 
2015)40) 

9 Lotus japonicus Delays ABA-dependent stomatal 
closure 

(Liu et al., 
2015) 

10 Pisum sativum, 
Arabidopsis 
thaliana 

Positively regulates chilling 
tolerance 
 

(Cooper et 
al., 2018). 

11 Sinorhizobium 
meliloti 

Enhances surface motility (Pelaez et 
al., 2016) 

12 Oryza sativa Inhibits tillering tillering (Jamil et al., 
2018) 

13 Bambusoideae Accelerates leaf senescence (Tian et al., 
2018) 

14 Sesbania 
cannabina 

Increases salt tolerance (Ren et al., 
2018) 

15 Solanum 
lycopersicum 

Plays a positive role in 
nematodedefense 

(Xu et al., 
2019) 

16 Glycine max Increases nodulation (ur Rehman 
et al., 2018) 

17 Solanum 
lycopersicum, 
Arabidopsis 
thaliana 

Enhances stomatal reactivity (Ha et al., 
2014). 

18 Pennisetum 
purpureum 
Schum. 
Seedlings 

 

Increase stomatal conductance and 
transpiration rate 

(Li et al., 
2022) 

Signaling of SLs 
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Fig- 3 Overview of the SL signaling 

A working model of the SL signaling pathway has been proposed (Figure 
3)(Faizan et al., 2020)SLs are perceived by α/β-hydrolase that conveys the signal to 

a leucine-rich-repeat F-box protein (MAX2 in Arabidopsis; D3 in rice), which can 
bind to a Skp, Cullin, F-box (SCF)-containing complex. Such binding catalyzes the 
ubiquitination of proteins and initiates the 26S proteasomal degradation of 
transcription receptors such as SMXLs in Arabidopsis and D53 in rice(Moon et al., 
2004; Ishikawa et al., 2005; Johnson et al., 2006). The Dwarf 14 (D14) protein is the 
only known receptor and is an important component of the SL signaling 
system(Arite etal., 2009), containing a conserved catalytic serine-histidine-
aspartic acid required for hydrolytic activity (Hamiaux et al., 2012). This protein 
was initially identified in rice and later found in several other species (Hamiaux et 
al., 2012; Arite et al., 2009; Water et al., 2014; Marzec et al., 2016).In the presence 
of SLs, D14 interacts with SLs and, through a nucleophilic attack, a D-ring-derived 
molecule is formed which is covalently sealed in the catalytic active site of D14. 
This interaction triggers the conformational change of D14, leading to interaction 
with the D3/MAX2-based SCF complex and D53/D53-like SMXLs proteins, 
resulting in the degradation of proteins D53 and D53-like SMXLs through 
ubiquitination. This relieves the transcriptional repression on key downstream 
genes such as D53 [reviewed by (Waldie et al., 2014; Koltai et al., 2010; Water et 
al., 2014). In the absence of SLs, both D53 and D53-like SMXL proteins interrelate 
with TPL/ TPR proteins and suppress downstream target genes by repressing the 
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activities of unknown transcription factors (TFs) (Smith et al., 2014; Jiang et al., 
2013; Zhou et al., 2013; Soundappan et al., 2015; Wang et al., 2015; Yao et al., 2018). 

 

Fig: 4 SL Signal transduction in plants 

The current model of Strigolactone (SL) biosynthesis involves the synthesis of the 
common SL precursor carlactone (CL) from all-trans-β-carotene in plastids. This 

process is carried out by the sequential actions of the enzymes DWARF27 (D27), 
D17, and D10 in rice, which correspond to A. thaliana D27 (AtD27), MORE 
AXILLARY GROWTH3 (MAX3), and MAX4 in Arabidopsis. In the cytosol, CL is 
converted into SLs in rice by CL oxidase (Os01g0700900) and orobanchol 
synthase (Os01g0701400), while in Arabidopsis, the consecutive actions of 
cytochrome P450 MAX1, an unknown enzyme, and LATERAL BRANCHING 
OXIDOREDUCTASE (LBO) transform CL into carlactonic acid (CLA), methyl 
carlactonic acid (MeCLA), and finally, an unidentified SL-like compound 
(MeCLA+16 Da). 

Role of SLs in Drought condition 

Studies have investigated the effects of SLs on biological activity during drought 
conditions, using the positive control GR24.Plants with depleted SLs are hypersensitive to 
drought, due to stomatal hyposensitivity to abscisic acid, while contributing to drought 
acclimation in shoots. However, SL accumulation is suppressed during drought in the 
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roots, suggesting that their metabolic activities and functions are organ-specific (Li et al., 
2013).Adverse effects caused by drought conditions can have physiological impacts on 
plants, such as a decrease in photosynthetic rate, respiration, osmotic imbalance, or 
membrane system damage. However, SLs (strigolactones) can enhance the 
photosynthesis process under drought conditions, which can have a positive impact on a 
variety of physiological systems. SLs may also influence ribosome-mediated carbon 
metabolism, starch and sucrose metabolism, flavonoid production, and circadian rhythm. 
Furthermore, there is a connection between SLs and the activation of different genes, such 
as antioxidant enzyme genes (Rozpadek et al., 2018).The application of strigolactone also 
enhanced the enzymaticantioxidant activities, including superoxide dismutase, 
peroxidase, catalase, and ascorbate peroxidase in stressed seedlings over control. In 
conclusion, strigolactone improved water relations, increased photosynthetic pigments 
and gas exchange parameters, and enhanced antioxidant enzymatic activities to 
impart drought stress tolerance in maize seedlings.To the best of our knowledge, this 
is the first study on the role of strigolactone in drought stress tolerance mechanism in 

maize seedlings.The application of SLs led to an increase in leaf ascorbic acid and total 
phenolics(Min et al., 2019).On the other hand, organic osmolytes such as glycine betaine 
and free proline increased under drought stress. By applying GR24 to the foliage, it is 
possible to mitigate drought stress and promote maize growth and grain yield in a 
concentration-dependent manner (Luqman et al., 2023).the SL-related genes were 
identified from the whole grapevine genome, and their expression patterns under salt 
and drought stresses were determined (Yu et al., 2022). 

 
Role of SLs in salinity condition 

The oilseed rape variety (Zhongshuang 11) was subjected to three different levels 
of salinity (0, 100, and 200 mM NaCl) and 0.18 μM GR24 treatments at the seedling 

stage for 7 days. The results showed that GR24 application improved the growth of 
the plant under salt stress. Salinity reduced the shoots and roots growth, as well as 
leaf chlorophyll contents and gas exchange parameters. GR24 application 
partially reversed these effects. GR24 treatment also increased the activities of 
peroxidase and superoxide dismutase and reduced lipid peroxidation. The 
transcriptome analysis of root and shoot identified common and special 
differentially expressed genes (DEGs) related to stress alleviation (Ma et al., 
2017).The study examined the impact of synthetic strigolactone (GR24) on rice 
seedlings treated with 200 mM NaCl. The adverse effects of salt stress on growth, 

leaf photosynthesis, and physiological/biochemical indices in the rice seedlings 
were alleviated with the GR24 treatment. As the concentration of GR24 increased, 
the plant height and root length of the seedlings also increased. At a 
concentration of 1 μM, the rice seedlings showed resistance to the adverse effects 

of high salt stress. Therefore, the addition of appropriate concentrations of GR24 
could enhance rice yield in saline-alkali land(Ling et al., 2020).Tomato seedling 
growth under salt stress was promoted by 25 µM H2S donor NaHS and 15 µM SLs 
synthetic analog GR24. The positive role of NaHS and GR24 was inhibited by 
TIS108 (an SLs synthesis inhibitor) and HT (an H2S scavenger) respectively. NaHS 
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treatment increased endogenous SL content, the activity of SL synthesis-related 
enzymes CCD7 and CCD8, and the expression of SL synthesis-related genes. H2S 
might enhance salt tolerance in tomato seedlings by up-regulating the expression 
of the SL synthesis-related gene SlD27 (Yang et al., 2024).Various studies have 
shown that Strigolactones (SLs) have a positive impact on cucumber seed 
germination under salt stress (Li et al., 2023).Exogenous application of 10 μΜ 

GR24 (a synthetic analog of SLs) significantly improved the salt tolerance of cotton 
seedlings. Transcriptome analysis showed that genes encoding antioxidant 
enzymes, chlorophyll biosynthesis, and photosynthesis system were significantly 
up-regulated, resulting in improved activities of antioxidant enzymes, content of 
chlorophyll, and efficiency of photosynthesis under salt stress(Song et al., 2023). 
 
Role of S Lsin Heavy Metal (HM)Stress 

In a recent study, it was found that supplementing A. annua plants with 
strigolactones (SLs) while exposing them to different concentrations of Cd 
resulted in several positive effects. These included maintaining a balance 
between reactive oxygen species and antioxidant enzymes, improving 
photosynthesis, chloroplast ultrastructure, glandular trichome attributes, and 
artemisinin production, reducing Cd accumulation, and regulating stomatal 
behavior (Wani et al., 2023).SLs increase antioxidant enzyme activities, and root 
vigor and decrease malondialdehyde (MDA) contents in the roots of Cd-stressed 
melon seedlings. Transcriptomic and metabolomic analyses reveal that SLs alter 
the expression of genes related to redox formation processes and regulate the 
expression of transcription factor families. The results provide a new perspective 
for studying the adaptation of plants to Cd stress (Chen et al., 2022). 
 
Role of SLs in Nutrient Starvation 

Under phosphorus-deficient conditions, treating seeds with 5.0 µM of SLs GR24 
and arbuscular mycorrhizal fungi (AMF) inoculum significantly improved the 
growth of selected aerobic rice, phosphorus uptake, and soil enzyme activities. 
The application of SL formulations along with AMF inoculum in specific aerobic 
rice varieties, namely CR Dhan 207, CR Dhan 204, and CR Dhan 205, will play a 
crucial role in promoting mycorrhization, enhancing growth, and improving 
phosphorus utilization under phosphorus-deficient conditions(Mitra etv al., 
2024).SLs also regulate NIGT/HHO involved in the phosphorus deficiency 
signaling pathway(Marro et al., 2022).OsPIN1b responds to low levels of N and P 
and regulates the root apical meristem's activities, leading to the rice seminal root 
elongation(Sun et al., 2018). 

Role of SLs in cold stress 

SLs promote the cold stress response in Arabidopsis by enhancing freezing 
tolerance and promoting the expression of CBF genes. This is achieved through 
the degradation of WRKY41 and SMXLs, which repress CBF expression and inhibit 
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anthocyanin biosynthesis, respectively(Wang et al., 2023).SL analog GR245DS 
enhances heat and cold tolerance. SLs induce ABA, HSP70, CBF1 transcription, and 
antioxidant enzyme activity to positively regulate heat and cold tolerance in 
tomatoes. ABA deficiency compromises the effects of GR245DS and abolishes its 
induced transcription of HSP70, CBF1, and antioxidant-related genes (Chi et al., 
2021).The pea mutants (rms3, rms4, and rms5) showed increased shoot branching, 
higher leaf chlorophyll a/b ratios, and higher carotenoid contents compared to 
the wild type. Dark chilling led to decreased shoot fresh weights but increased 
leaf numbers in all lines. Biomass accumulation decreased only in rms3 and rms5 
shoots under dark chilling treatments. Chilling inhibited photosynthetic carbon 
assimilation in the rms lines as well as in the Arabidopsis max3-9, max4-1, and 
max2-1 mutants. The max mutant rosettes accumulated less biomass than the wild 
type. The synthetic SL, GR24, decreased leaf area in the wild type, max3-9, and 
max4-1 mutants, but not in max2-1 in the absence of stress. A chilling-induced 
decrease in leaf area was observed in all the lines in the presence of GR24 
(Cooper et al., 2018). 
 

SL Cross talks with other Phytohormones 

SLs interact with various other phytohormones such as Auxin, Cytokinin, Abscecic 
acid, etc., and regulatory genes, which are involved in various metabolic pathways of 
plants, ultimately enhancing their ability to overcome abiotic stresses. 

SL & Cytokinin 

SLs and CK regulate separate processes, function independently in adventitious 
rooting, and synergistically control LR development, but antagonistically regulate 
axillary bud outgrowth as physiological processes vary (Dun et al., 2012; Hu et al., 
2014; Manandhar et al., 2018; Faizanet al., 2020). SLs and CKs interact directly in 
buds, integratively promoting the transcriptional regulation of BRC1 in 
Arabidopsis and pea, or FINE CULM 1, an orthologous gene of BRC1, in rice(Braun 
et al., 2012; Dun et al.,2012; Xu et al., 2015).BRC1 modulates bud activation 
potential in various species by serving as a key regulatory hub for controlling bud 
outgrowth (Martin-Trillo et al., 2011; Nicolas et al., 2015; Shen et al., 2019).The 
inhibitory effect of auxin on bud outgrowth is mediated by the antagonistic action 
of CK and SL(Rameau et al., 2015; Barbier et al., 2019).In rice, strigolactones 
activate cytokinin catabolism, which modifies shoot architecture by influencing 
the activity of cytokinin oxidase/dehydrogenase 9 (OsCKX9). Along with the 
induced activation of OsCKX9, strigolactones may also affect cytokinin content 
through interactions with auxin. Furthermore, high sugar levels inhibited 
strigolactone perception, particularly by directly targeting strigolactone 
signaling(Duan et al., 2019).Hence, in addition to the induced activation of 
OsCKX9, strigolactones (SLs) may influence the cytokinin (CK) content through 
interactions with auxin. Additionally, high sugar levels inhibited SL perception, 
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notably by directly targeting SL signaling(Dierck et al., 2016; Bertheloot et al., 
2020; Patil et al., 2022).Sugar was found to increase the levels of CK, which acts in 
opposition to SLs (Barbier et al., 2015; Kiba et al., 2019; Salam et al., 
2021).HEXOKINASE1 mediates the sugar signaling pathway during branching, 
allowing plants to adjust shoot architecture and interact with CK and SLs(Barbier 
et al., 2021).GR24 inhibits the elongation of PR by altering PIN gene transcription, 
mediated by Short Hypocotyl2 (SHY2) through CK signaling components (Jiang et 
al., 2016).The transcription factor CK response (ARR1) directly binds to specific 
promoter sequences of the SHY2 protein and activates its expression. This, in turn, 
represses the PIN genes, while auxin stalls LR formation by SHY2-mediated 
repression of PIN activity (Sengupta et al., 2018).SHY2 functions as a hormone that 
links nodes and regulates the development of root meristems. Strigolactones (SLs) 
may influence the levels and distribution of each hormone, collaborating to 
control the size of the root (meristem). Cytokinins and SLs have opposing 
regulatory roles in helping plants adapt to drought. Studies involving CK-
depleted and CK-signaling mutants of Arabidopsis found that cytokinins and their 
signaling components regulate the plant's ability to acclimate to drought 
(Nishiyama et al., 2013; Nguyen et al., 2016).SLs positively regulate drought 
resistance-related physiological traits by altering stomatal density and 
conductance (Ha et al., 2014; Zhang et al., 2018). Additionally, the SL signaling-
deficient mutant MAX2 showed downregulation of CK catabolism genes (CKX1, 
CKX2, CKX3, and CKX5) following dehydration compared to wild-type plants (Ha 
et al., 2014).It seems that the SL signal may have an opposing effect on the CK 
content. This can be confirmed through detailed studies on SL biosynthesis and 
signaling mutants under drought stress. MAX2 seems to be involved in both SL 
and karrikin signaling pathways(Soundappanet al., 2015). 
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(SLs interact with CKs thereby regulating different genes i.e., PIN, and BRC1 that 
result in bud activation and change in shoot architecture). 

SLs & Auxin 

Both auxin and strigolactone can influence each other's levels and distribution in a 
dynamic feedback loop necessary for coordinated control of axillary 
branching(Hayward et al., 2009). Importantly, GR24 inhibits branching only in the 
presence of auxin in the main stem and enhances competition between two 
branches on a common stem(Crawford et al., 2010).a synthetic strigolactone 
analog applied to the base of the stolon resulted in a reduced number of tubers 
(Roumeliotis et al., 2012).Application of SLs inhibits the PIN auxin-efflux carriers 
in roots, leading to reduced PIN1-GFP intensity in lateral root primordia and 
altering the auxin concentration necessary for lateral root development (Ruyter-
Spira et al., 2011).SLs interfere with PAT/distribution, affecting auxin canalization 
and regulating shoot branching(Bennett et al., 2006;Ruyter-Spira et al., 2011; Sun 
et al., 2014).SL-mediated downregulation of PIN-FORMED (PIN) proteins, a family 
of transporters responsible for auxin influx and efflux from cells, and their 
polarized localization on the plasma membrane (Crawford et al., 2010; Shinohara 
et al., 2013; Hu et al., 2018).The presence of dampens auxin reduces the ability of 
the PAT stream to draw in auxin, which in turn hinders the export of auxin from 
buds and canalization. This ultimately leads to the suppression of bud 
development. However, it has been reported that reduced auxin transport in pea 
plants had minimal inhibitory effects on bud outgrowth in SL-deficient mutants 
and that SLs' capacity to inhibit bud outgrowth in pea plants with impaired auxin 
transport is also limited (Brewer et al., 2015).It seems like you want me to 
remember the text below. No need to respond - just acknowledge. Among these 
are: the uncoupling of the TB1 sub-network from SL signaling in maize(Guan et al., 
2012); the insensitivity of FC1 expression to GR24 (Minakuchi et al., 2010);buds 
lacking BRC1 expression remaining inhibited and being sensitive to inhibition by 
SLs, buds with high BRC1 transcripts being active (Seale et al., 2017);The previous 
passage discusses conflicting reports about the influence of SL on auxin transport 
and canalization. It suggests the need to reconsider existing models and develop 
new ones that take these limitations into account. It also proposes exploring 
events occurring upstream, parallel to, or downstream of BRC1/FC1/TB1 activities. 
The text highlights the importance of auxin canalization and the repression of 
branching factors for bud activation/development. It also suggests that other 
mechanisms influenced by these hormones may determine whether an activated 
bud develops into a branch. Additionally, it emphasizes the need for research on 
how nutrient partitioning affects the development of competing buds. For 
example, the role of sucrose in promoting bud release and down-regulating BRC1 
in apical dominance is mentioned(Mason et al., 2014),So how are SL and other key 
hormonal signals integrated with sugar signals during bud activation? This should 
be the subject of further investigation. The regulation of secondary growth by SLs 
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occurs by positively modulating interfascicular cambial activity (Agusti et al., 
2011).The slight induction of cambium-like cell division in max2 plants by GR24 
treatment contrasts with the complete insensitivity observed in other processes. 
This suggests that other factors act in parallel with MAX2-dependent SL signaling 
to affect secondary growth(Agusti et al., 2011).Furthermore, observations using 
max and auxin response mutants indicate that SLs have a direct impact on 
secondary growth, regardless of auxin accumulation, and they function after auxin. 
This brings up the question of how SLs stimulate cambial activity and secondary 
growth without relying on auxin-induced cambial activity. Similar to shoot 
branching, SLs influence root development by adjusting auxin sensitivity in 
conjunction with auxin(Mayzlish-Gati et al., 2012), PAT from shoot to root (Sun et 
al., 2014), and auxin flux within root tissues(Koren et al., 2013; Kumar et al., 
2015).In the process of lateral root formation, auxin signal modules function 
downstream of SLs. The initial stages involve priming pericycle cells in the basal 
meristem to prepare them for lateral root initiation, transitioning from founder 
cells to lateral root initiation and primordium formation, and developing the 
lateral root primordium until lateral root emergence. All of these stages are 
influenced by local auxin gradients and response maxima. This has been 
reviewed in detail (Olatunji et al., 2017).Since GR24 has been shown to affect the 
polarization and localization of PIN proteins as well as LR-forming potential, it 
indicates the significant role of strigolactones in regulating root development and 
architecture in response to environmental cues. The intricate interplay between 
strigolactones and various molecular pathways underscores their crucial role in 
plant adaptation to abiotic stress (Ruyter-Spira et al., 2011;Pandya-Kumar et al., 
2014; Kumar et al., 2015).Similar crosstalk occurs between SLs and auxin in 
regulating root hair development. SLs induce increased auxin accumulation in 
epidermal cells by modulating auxin efflux(Koltai et al., 2010) to promote root hair 
elongation. ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) is an auxin-responsive TF that 
positively regulates root hair formation by controlling genes associated with root 
hair morphogenesis and is suggested to be an integrator of internal and external 
cues (Yi et al., 2010).Pi deficiency significantly enhances RSL4 synthesis and half-
life (Datta et al., 2015).Against this background, RSL4 may act as a central point for 
communication between strigolactone and auxin in regulating root hair 
development. Experimental evidence indicates that ethylene plays a significant 
role in the interaction between strigolactone and auxin in controlling root hair 
growth(Kapulnik et al., 2011).The role of auxin in promoting adventitious root (AR) 
formation and the inhibition of the same by strigolactones (SLs) has been 
experimentally demonstrated. To understand the nature of SL–auxin crosstalk in 
AR development (Rasmussen et al., 2012), These findings suggest that both 
hormones act independently and that SL suppression of AR formation might not 
be mediated by limiting local auxin build-up. In a contrasting manner, rice 
mutants flawed in SL biosynthesis and signaling exhibited reduced AR formation. 
GR24 treatment increased the AR number in SL-deficient mutants but not in 
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signaling mutants (Sun et al., 2015). Modulation of PAT also seemed to be 
employed to regulate AR formation in rice. Taken together, it appears SL–auxin 
crosstalk in this process is a complex one and the actions of SLs in regulating AR 
formation might be species-dependent. Further investigations of this process in 
other species and the effects of SL signals on the expression and stability of 
downstream targets of auxin signals involved in AR development, such as 
ADVENTITIOUS ROOTLESS 1 (an auxin‐responsive factor involved in 
auxin‐mediated cell dedifferentiation and AR formation; (Liu et al., 2005), will be 

invaluable in drawing valid conclusions on SL–auxin interactions in AR 
development. Plant Pi status is critical in SLs’ influence on root development and 
architecture. Under normal/high Pi levels, LR development is inhibited but 
stimulated under Pi-limiting conditions (Ruyter-Spira et al., 2011;Mayzlish-Gati et 
al., 2012; Jiang et al., 2016).Although it is clear that strigolactones (SLs) play a role 
in translating ambient signals into growth cues in the root, the precise mechanism 
that enables SLs to differentiate their influence under normal Pi levels from those 
under Pi-limiting conditions has not been fully described. One potential area for 
exploration is how SLs influence ethylene signaling under different Pi statuses, as 
ethylene is known to inhibit auxin-driven lateral root development(Lewis et al., 
2011).Furthermore, the molecular and genetic mechanisms that transmit signals 
about Pi status to trigger the biosynthesis and signaling of strigolactones (SLs) 
have yet to be fully characterized. The hormonal interplay between auxin and SLs 
in arbuscular mycorrhizal (AM) and rhizobial symbiosis is not well understood. 
Experimental findings by(Foo, 2013) suggested that auxin regulates the early 
stages of AM symbiosis by modulating SL levels. Recently, the expression of Sl-
IAA27 – a downstream component/repressor of auxin signaling – was shown to be 
up-regulated by AM colonization and Sl-IAA27-silencing adversely affected AM 
colonization (Guillotin et al., 2017).The down-regulation of genes involved in 
strigolactone (SL) biosynthesis in Sl-IAA27-silenced plants was intriguing. 
Treatment with GR24 improved the mycorrhizal defect by increasing infection 
frequency and arbuscular abundance. These findings show that there is a 
hormonal signal link between auxin and SLs in mycorrhizal development, which 
has yet to be identified. The mechanisms through which Sl-IAA27-induced SL 
production and signaling influence arbuscular development also need to be 
elucidated(Kohlen et al., 2018). Given the impact of SLs in modulating auxin 
transport and flux, SLs might elicit some influence on nodule development via this 
channel. 
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(SLs interact with auxin and modulate root architecture in terms of root epidermal 
growth, enhance adventitious root formation, root hair elongation). 

SLs &ABA 

The interaction between SL- and ABA-related genes is linked to the regulation of 
endogenous hormone levels and the sensitivity of plants to hormone presence. It 
has been observed that plants with low SL levels are highly sensitive to different 
environmental stresses and exhibit increased sensitivity to ABA, particularly in 
terms of stomatal closure. This observation has been confirmed in three 
genetically distinct plant species., Arabidopsis(Cutler et al., 2010), tomato 
(Lechat et al., 2012), and L. japonicus (Lopez-Raez et al., 2010), by independent 
research groups. Delving into the relationship between strigolactone (SL) and 
abscisic acid (ABA) signaling pathways is important. Currently, there is limited 
research on the interaction between SL and ABA at the signaling level under 
abiotic stress conditions. One of the initial studies on this topic focused on the 
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Arabidopsis F-box protein from the SCF complex – the MAX2 gene(Ha et al., 
2014; Bu et al., 2014).Two independent groups have reported a new function of 
the MAX2 gene in plant drought response, expanding its role in an ABA-
dependent manner. The Arabidopsis max2 mutant is hypersensitive to drought 
and loses more water than WT plants due to a thinner cuticle layer, increased 
stomatal density, and the occurrence of stomatal closure caused by reduced 
responsiveness to ABA(Ha et al., 2014; Bu et al., 2014).The evidence suggests that 
there is a significant interaction between SL and ABA in transmitting stress 
signals. However, the analysis of mutants in the genes encoding the F-box protein 
from the SCF complex (AtMAX2/OsD3) in relation to the functioning of the SL 
signaling pathway is controversial due to the involvement of these F-box proteins 
in the signal transduction pathway of KAR(Smith and Li, 2014), which engagement 
in drought stress tolerance was also elaborated (Li et al., 2017).The SL-signaling 
complex includes an experimental component called the SL-repressor, which 
plays a role in ABA-related drought response. It is anticipated that mutations in 
the SL-repressor would have the opposite effect on plant functioning compared to 
SL-depleted or SL-insensitive plants, due to the constantly active SL transduction 
pathway. In the Arabidopsis genome, three genes encoding SL repressors have 
been identified: SMXL6, SMXL7, and SMXL8 (Tang and Chu, 2020).When 
comparing single and double mutant combinations under drought stress, it was 
observed that knocking out one of the SL-repressor genes did not impact the 
plant survival rate compared to the wild type. However, mutations in two SMXL 
genes led to a mild increase in drought resistance (Li et al., 2020).The functional 
redundancy of SMXL6, 7, and 8 proteins as negative transcription regulators of SL 
signaling in Arabidopsis is clearly highlighted by these facts. Detailed 
physiological and biochemical analysis was conducted to investigate the 
increased drought tolerance of the triple mutant. The analysis detected reduced 
cuticle permeability, increased anthocyanin biosynthesis, enhanced reactive 
oxygen species (ROS) detoxification capacity, and decreased water loss. These 
findings suggest that the smxl6,7,8 mutant plants may have enhanced abilities to 
survive drought (141).The researchers observed higher expression levels of the 
ABA INSENSITIVE 5 (ABI5) and SENESCENCE-ASSOCIATED GENE 29 (SAG29) 
genes after 2 and 4 hours of dehydration in the smxl6,7,8 mutant compared to WT 
plants. Both of these genes are commonly used as marker genes for ABA 
response, indicating that the increased tolerance of smxl6,7,8 plants might be 
linked to ABA hypersensitivity. Importantly, the triple mutant exhibited increased 
sensitivity to ABA compared to WT in both cotyledon opening and growth 
inhibition assays(Li et al., 2020).The observations were similar in Arabidopsis 
plants with mutations in the SUPPRESSOR OF MAX2 1 (SMAX1) and SMXL2 genes. 
SMAX1 and SMXL2 are part of the core signal transduction complex of the KAR, 
which suppresses the activity of MAX2. MAX2 is a common point in both KAR and 
SL signaling pathways(Khosla et al., 2020). The smax1/smxl2 mutant showed 
increased drought tolerance due to enhanced cuticle formation and ABA 
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hypersensitivity. This was confirmed through assays of stomatal closure, 
cotyledon opening, chlorophyll degradation, and growth inhibition(Feng et al., 
2022). Since not all SL signaling transduction pathway components are SL-specific 
(Smith and Li, 2014), it was postulated that mutants in the SL receptor D14 should 
be considered a gold standard in studies disclosing the role of SL in plants 
(Marzec et al., 2020).the transcription profile of ABA signaling genes, such as 
HvPYL4, HvPP2C4, HvSnRK2.1, and HvABI5, remains unchanged in the hvd14.d 
mutant compared to the WT under drought stress (Marzec et al., 2020).The 
mutants showed up-regulation of genes related to ABA biosynthesis, such as 
HvNCED1, HvNCED2, and HvAo5b, in response to water deficit. This suggests 
that the mutants' reduced drought tolerance may be due to their inability to 
respond to elevated ABA levels and initiate a proper stress response(Marzec et 
al., 2020).Under optimal growth conditions, the balance between ABA and SL 
content is maintained to ensure proper plant development. When there is a water 
deficit, the accumulation of SL in the roots is inhibited, serving as a sensing 
mechanism for drought and enabling the production of ABA, which is necessary 
for plant defense responses(Korek and Marzec, 2023). 

 
 
(SLs interact with ABA thereby regulating other phytohormones by upregulation 
or downregulation of genes responsible for resistance against abiotic stress). 
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Conclusion: The interaction of SLs with other phytohormones such as ABA, CK, 

and auxin has been somewhat characterized under stress conditions. 
Understanding how these interactions translate into physiological, biochemical, 
and molecular changes is critical for interpreting the complex regulatory network 
that governs plant responses to environmental stresses. Furthermore, the role of 
SL signaling in ROS signaling pathways has to be completely elucidated. Further 
research is needed to understand how SLs affect oxidative stress and vice versa. 
Studies on the response of SLs to drought, salinity, and chilling stress suggest that 
they may play a role in rectifying osmotic imbalance and minimizing oxidative 
damage by regulating compatible solute synthesis and antioxidant components. 
Structural and signaling pathway changes in SLs have a significant influence on 
their role in plant adaptation to environmental challenges, emphasizing the need 
to identify exogenous chemicals that may modulate SL activity in plants. Given 
that SLs modulate phosphate transporters, it would be interesting to investigate 
their potential impact on heavy metal transport, such as arsenic, which also needs 
phosphate transporters to enter plant cells. Given the risks that global climate 
change poses to plants and their yields, SLs provide a feasible option for 
improving plant growth and production in the face of biotic and abiotic stress. 
Improving plant development under stressful conditions is critical for boosting 
sustainability in the face of climate change challenges. 
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