
Scopus Indexed Journal                                                                                              June 2024 

 

 

 

762 

 

 

 

 

 

 

Bioscene 

                                                                                                                       
 

 

 

 

 

 

 

 

 

 

 

Bioscene 

Volume- 21 Number- 02 

ISSN: 1539-2422 (P) 2055-1583 (O) 

www.explorebioscene.com 

 

http://www.explorebioscene.com/


Scopus Indexed Journal                                                                                              June 2024 

 

 

 

763 

Wearable IOT-Based Early Detection of Mental Disorders using 

Fast EXP-GRU from EEG Signals 

 

Neetu Surendran & Vanshika Gupta (Assistant Professor) 

Department of Computer Science and engineering, Inderprastha Engineering 

College, Ghaziabad 

 

Abstract: Mental health issues have become a significant concern with the 

increasing competitiveness and pressure in today's society. To monitor mental 

health, smart wearable devices have emerged as valuable tools.However, there is 

insufficient comprehensive research on the classification of different mental health 

disorders. For addressing this gap, a Wearable IoT-based approach for Early and 

real-time Detection of Mental Disorders using FastExpGRU from EEG Signals 

(WIEDMD-FES) is proposed in this work.From publicly available sources, the 

approach gathers the Electroencephalogram (EEG) signals and pre-processes them. 

For analyzing the signals, it applies Blind Source Separation (BSS), bi-spectrum 

analysis, and 2D-Graph Fourier Transform (2D-GFT). Through Wigner-Ville Intrinsic 

Time-Scale Decomposition (WiVi-ITSD), the source signal acquired from BSS 

undergoes signal decomposition. Scalp map generation, band separation, 

Isoelectric Level Detection (ILD), and Weighted Directed Functional Brain Network 

(WDFBN) construction are done for the decomposed signal. Next, from the 2D-GFT 

signal, scalp map, ILD, and WDFBN, the features are extracted. Optimal features are 

selected by the Adaptively Mutated Bald Eagle Optimization(ADM-BEO) algorithm, 

and different types of mental disorders are classified by the Fast Exponential Linear 

Unit-Gated Recurrent Unit(FastExpGRU) model. The proposed approach’s efficiency 

is demonstrated by the experimental evaluation. 

Keywords: Ward Method-based K-Nearest Neighbor(Ward-KNN); Wigner-Ville 

Intrinsic Time-Scale Decomposition (WiVi-ITSD); Adaptively Mutated Bald Eagle 

Optimization (ADM-BEO); Fast Exponential Linear Unit -Gated Recurrent Unit 

(FastExp-GRU); 2D- Graph Fourier Transform (2D-GFT). 

 

1. Introduction 

Globally, mental health disorders have become a significant concern in recent 

years.Mental health disorders, namely schizophrenia, bipolar disorder, anxiety, and 

depression, which affect both individuals’ lives and society as a whole, are prevalent 

globally(Khiani et al., 2022; Pacheco-Lorenzo et al., 2021). The high levels of 

competition, stress, and pressure in daily life have contributed to this increase in 

mental health issues(Singh et al., 2022). Thus, identifying mental health issues at 
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their earliest stages is essential. Timely intervention, appropriate treatment, and 

support are enabled by early detection. This could prevent the progression of 

mental disorders and reduce their negative consequences (D’Alfonso, 2020)(Ahmed 

et al., 2022).Early signs of mental disorders could be subtle and easily overlooked, 

which makes it necessaryfor developingefficient strategies and tools for their 

detection (Juneja et al., 2021). 

It is challenging to develop efficient approaches for the early detection and 

intervention of mental disorders, which involves several challenges and 

considerations (Li, 2023).For addressing this challenge, one promising approach is 

the use of wearable Internet of Things (IoT) devices (Hussien & Mohialden, 2021).In 

recent years, these smart wearable devices, namely smartwatches, fitness trackers, 

and headsets have gained popularity to monitor several aspects of health and well-

being (Gutierrez et al., 2021). The advantage of continuous and real-time data 

collection is offered, which provides valuable insights into an individual’s 

physiological and behavioral patterns (Uban et al., 2021). Great potential for the 

early detection of mental disorders is held by the integration of wearable IoT 

devices with mental health monitoring (Arji et al., 2023). Such devices could capture 

and investigate a range of physiological and behavioral parameters, which are 

indicative of mental health status (Gomes et al., 2023). For example, valuable 

information about brain activity and patternsthat can be correlated with specific 

mental disorders can be provided by EEG signals gathered from wearable EEG 

headsets(Saito et al., 2022). 

But, there is still a lack of comprehensive research on the classification of different 

types of mental disorders, despite the growing interest in using wearable IoT 

devices for mental health monitoring (Ji et al., 2022). In existing works, specific 

disorders and limited sets of features are concentrated.The understanding of the 

broader spectrum of mental health conditions may be limited by only considering 

specific disorders(Alwakeel et al., 2023).Thus, for addressing these problems, this 

paper proposes a novel framework called wearable IoT-based early detection of 

mental disorders using FastExp-GRU from EEG signals. 

1.1. Problem statement 

A few common drawbacks related to prevailing approaches are considered below: 

 The issue of missing values was not adequately addressed by a few existing 

approaches, which results in reduced signal quality and potentially inaccurate 

classification results. 
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 In traditional techniques, only time-domain, frequency-domain, time-

frequency domain, and spatial domain features were concentrated and the 

significant salient information was discarded. 

 For effectively handling the computational complexity related to multi-

channel EEG signals, prevailing approaches struggle, which causes longer 

processing times or resource-intensive computations. 

 Prevailing works often concentrated on particular disorders.This limitation 

can hinder the comprehensive understanding and diagnosis of individuals 

who experience multiple mental illnesses. 

The research approach’s major objectives are described below: 

 The common problem of missing values in EEG signals is addressed by this 

approach. It usesthe Ward-KNN algorithm for missing value imputations, thus 

ensuring a more complete dataset for analysis. 

 BSS, bi-spectrum analysis, 2D-GFT analysis, and scalp map generation are 

included in the proposed approach for capturing relevant features.This 

technique aims to enhance the model’s performance by considering a 

broader range of information from EEG signals. 

 Using WiVi-ITSD, band separation, ILD, and WDFBN construction, the 

proposed framework recognizes the heterogeneity and complex associations 

among multi-channel EEG signals. For enhancing the system’s generalization 

capabilities, the framework aims to capture complex associations. 

 For classifying different types of mental health disorders, the proposed 

framework utilizes FastExp-GRU. The framework aims to minimize the 

chances of misdiagnosis by clinicians by leveraging real-time and accurate 

detection approaches.  

The work is arranged as follows: the associated work concerning the proposed 

work is analyzed in section 2, the proposed approach is shown in section 3, and the 

proposed model’s performance is analyzed in section 4. Lastly, the paper is 

concluded with future work in section 5. 

2. Literature Survey 

(Kim et al., 2022)established an unobtrusive dementia prediction modelto monitor 

elderly persons’ physical activities via passive infrared motion sensors merged with 

data processing. Deep Neural Networks (DNNs), which predicted the risk of 
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dementia in a sensor-enabled home, were utilized. The system was non-invasive and 

cost-effective.However, the model failed for capturing cognitive function, memory, 

and emotional well-being that were necessary for an accurate dementia prediction. 

(Kumar et al., 2021) propoundedmental stress state detectionsystemutilizing sensor-

centric bio-signals. It utilized a multi-level DNN with hierarchical 

learning capabilities of a Convolution Neural Network (CNN). This classified the 

stress into 3 groups, namely baseline, stress, and amusement.The data quality 

problems, noise, and sensor variability could affect the model’s performance even 

though the system achieved superior performance. 

(Ahmed et al., 2023)explored Deep Hierarchical Attention Active Learning (DHAAL) 

for Mental Disorder prediction.The depression symptoms in mental health 

interventions were effectively extracted and classified into 9 diverseclasses by 

attention-centric active learning with deep entropy. As per the experimental 

outcomes, a superior F1 score was attained by the hierarchical attention approach. 

However, this system’s generalizability was limited. 

(Hassantabar et al., 2022)established anapproachnamedMental HealthDisorder 

Detection System (MHDDS)grounded on Wearable Sensors along with Artificial 

Neural Networks (ANN) and diagnosed3significant mental health disorders, namely 

bipolar, schizoaffective, and major depressive. MHDDS utilized 8 diverse categories 

of data acquired from sensors incorporated into a smartwatch and smartphone and 

achieved average accuracy. But, when applied to conditions that have overlapping 

symptoms, the approach’s effectiveness might change. 

(Thakur & Roy, 2021) explored mental health centered on the feature variables 

associatedwith dailyliving behavior utilizing smartphone usage and sensor data. It 

utilized an Independent-samples t-test, which analogized the variation in means 

betwixt the healthy group and the group with mental illness. For stress prediction 

and depression, the approach achieved a higher Area Under the Curve (AUC). 

Nevertheless, the approach was ineffective towards complex signals. 

(Guo et al., 2022) presenteda data fusion for mental health detection. This work used 

3 parts, such as physical appearance, academic performance, and representation 

learning. Lastly, for the final detection, a DNN was used. The approaches’ promising 

performance in comparison to prevailing studies was demonstrated by the extensive 

results. But, only limited biological markers were considered by the scheme.  

(Vaishnavi et al., 2022) propounded a Machine Learning (ML) technique, which 

identified mental health problems. (i) Logistic Regression, (ii) K-NN Classifier, (iii) 

Decision Tree Classifier, (iv) Random Forest, and (v) Stacking were the 5 ML 
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approaches. As per the experimental results, the approach achieved an overall 

accuracy of prediction of 79%. However, a very minimal dataset was utilized in the 

research. 

(Gouda et al., 2023) utilized ML technique for psychological instability detection. It 

utilized 4 AI algorithms, such as Decision Tree, Logistic Regression, XGBoost, and 

KNN. The work’s efficiency regarding dysfunctional behavior arrangement was 

exhibited by the results.Here, centered on actions and thoughts, mental disorders 

were established. However, the particular features or else variables utilized for 

prediction weren’t completely captured. 

(Jin et al., 2020) exploredan attention-centric block deep learning architecture 

within the device for multi-feature classification and fusion analysis. Different domain 

features’ optimum fusion was autonomously acquired. According to the results, 

mental states were efficiently classified with superior performance by the 

architecture. But, the mental disorders’ complexities weren’t sufficiently captured. 

(Dai & Ding, 2021) established multi-perception intelligent wearable devices, which 

monitored mental health. Here,as per the boosting decision fusion approach and 

ensemble learning idea, a strong classifier was designed. A superior classification 

effect was attained by the classifiers’ superposition fusion outcomes. However, when 

applied to diverse mental health disorders, the approach’s applicability and 

performance might vary. 

3. Proposed Methodology for Early Detection of Mental Disorders Using 

Wearable IOT Devices 

An approach for the early and real-time detection of mental disorders using 

wearable IoT devices is suggested in the proposed paper. Figure 1 illustrates the 

proposed work’s architecture. 
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Figure 1: Proposed architecture 

3.1. Input Source 

EEG signals gathered from wearable devices are considered as the input source. 

Valuable information about brainwave patterns, which provide the emotional states 

of an individual, isincluded in the EEG signals recorded by these wearable devices. 

The EEG signals )( aE are depicted as,  

),......3,2,1(},........,,,{ 321 AaEEEEE Aa      (1) 

3.2. Preprocessing 

)( aE undergoes pre-processing; pre-processing function improves the signal quality, 

eliminates noise, artifacts, and unwanted components, and makes the signal more 

reliable for further analysis. The proposed approach performs the following pre-

processing steps: 

Amplification filtering: EEG signals captured by wearable IoT devices are often 

weak and prone to noise interference. Amplification filtering involves amplifying the 

signals for increasing their strength when simultaneously applying filtering 

techniques for removing unwanted noise. The amplified output )(  is, 
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aEAF *
      

(2) 

Here, the input EEG signal is depicted as aE , and the amplification factor is 

signified as AF .  

Baseline correction:A process of removing baseline drift or slow variations in the 

signal is termed baseline correction. Itaidstoremove the effects of gradual changes 

in the electrode-skin interface or other slow variations unrelated to brain activity. 

The corrected signal )(Cr is,   

)( aa EMeanECr 
      

(3) 

Here, the mean value of )( aE  over the desired baseline period is signified as

)( aEMean .  

Ocular artifact correction:From eye blinks, eye movements, or other external 

sources, artifacts in EEG recordings can arise. These artifacts could affect the 

interpretation of EEG signals. Thus, those ocular artifacts are corrected. 

Missing Value Imputation (MVI):Due to electrode disconnections, EEG 

recordings have missing data points.For estimating or filling in the missing values 

based on surrounding data points, MVI techniques are applied. Here, for MVI, 

Ward-KNN is utilized. A versatile algorithm, which can handle various types of data, 

including continuous, discrete, ordinal, and categorical variables, is named 

KNN.This makes it well-suited to handle different kinds of missing data. But, when 

dealing with a large amount of data, especially for MVI tasks, the conventional KNN 

becomes slower. For overcoming this limitation, this work deploys the Ward 

Method, which considers the minimum variance distance betwixt the data points. 

This assists in estimating the missing value centered on the surrounding data points 

in a way that minimizes the overall variance of the dataset. Hence, the Ward-KNN 

ensures that the imputed values are consistent with the underlying patterns in the 

data, which enhances the reliability of the imputation process. The steps of Ward-

KNN are, 

Step 1: Initialize the number of data points )( Id . In this, the signal’s voltage value is 

depicted as )( Id , and it is given as, 

},........,,,{ 321 JI ddddd 
    

 (4) 

Step 2: The optimal )(k  value is determined; the number of nearest neighbors to 

consider for imputation is depicted as k . The k  value is determined by, 
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k
      (5)

 

Here, the total number of data points in the EEG recordings is signified as  . 

Step 3:Choose k  data points with the shortest distances to the missing values. Such 

data points become the k  nearest neighbors. Utilizing the ward approach, the 

distance is estimated, which is given by, 

 *)(*)(
),(

JI

J

JI

I

JI
dd

d

dd

d
ddDt







    (6)

 

Here, the Ward method distance between data points 
Id  and Jd  is depicted as

),( JI ddDt , the absolute value operator is signified as , and the data points’ mean 

vectors are depicted as  . 

Step 4:Next, using the average of the corresponding variable from the K nearest 

neighbors, the imputing of the missing value is done, which is, 

k

kV
Iv

 )(

      (7)
 

Here, imputing values are signified as Iv , and the sum of variable values from k  

nearest neighbors is depicted as )(kV . 

Hence, the preprocessed EEG signals are depicted as,  

},........,,,{ 321 Aa PEPEPEPEPE 
    (8) 

3.3. Blind source separation  

On the preprocessed signals )( aPE , the BSS is done.A signal processing approach 

utilized for separating original source signals from mixed signals devoid of any 

former knowledge about the sources or their mixing process is called BSS. The 

mixed EEG signals can be separated into their underlying source components, 

which represent the individual brainwave activities originating from different brain 

regions, by applying BSS.This separation permits for deeper analysis and 

understanding of the particular brain activities relatedto different mental disorders. 

The formula for BSS is given as, 

MM SMtB *       (9) 
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Here, the observed mixed signal matrix is signified as
MB , the mixing matrix is 

depicted as Mt , and the source signals matrix is indicated as
MS . The

MS  is,  

MM BMtS *)(
1      (10) 

Here, each row and column represents a different source signal )(S  and specific time 

sample )(t , respectively. Once )(S is separated, it undergoes Bi-spectrum analysis 

and signal decomposition process,correspondingly.  

3.3.1. Bi-spectrum analysis  

To gain insights into their nonlinear interactions and phase relationships between 

different frequency components in the brainwaves, theBi-spectrum analysis is done 

on the separated source signals )(S . In exploring the higher-order statistics and 

phase coupling betwixt different frequency components of the signals, Bi-spectrum 

analysis helps. It reveals nonlinear interactions and provides a more comprehensive 

understanding of signal dynamics. The bi-spectrum is computed as,  

2

2121 ),(),( ffff  
      (11)

 

Here, the bi-spectrum )( at frequencies 
1f  and

2
f  is depicted as ),( 21 ff , cross 

power spectrum between 
1f  and

2
f is signified as ),( 21 ff , and the modulus 

operation is indicated as| |. 

3.3.1.1. 2D-Graph Fourier Transform 

The 2D-GFT is applied to the bi-spectrum values )( obtained from bi-spectrum 

analysis. It evaluates the bi-spectrum values’ frequency characteristics and 

transforms them into the 2D frequency domain. It helps to identify the dominant 

frequency components and their spatial distribution within the bi-spectrum. The 2D-

GFT representation is visualized as a graph, where the amplitude or intensity at each 

point corresponds to the strength of the corresponding frequency component in the 

bi-spectrum. This representation renders insights into the frequency content and 

spatial distribution of the nonlinear interactions present in the signal. The 2D-GFT is 

described as, 

 ))**(2(*),(),(
2121

NfvfujExpffvuF  
  (12)

 

Here, 2D-GFT output at coordinates ),( vu  in the frequency domain is signified as

),( vuF , bi-spectrum value is depicted as ),( 21 ff , the complex exponential term is 
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given as  ))**(2( 21 NfvfujExp   , where, the imaginary unit is indicated as j , and 

the number of frequency bins is signified as N . 

3.3.2. Signal decomposition  

Using WiVi-ITSD, the source signals )(S  are decomposed. This decomposition helps 

to separate the source signals into constituent components, allowing for a more 

detailed analysis of individual components and rendering insights into the time-

varying frequency content of the signals. ITSD conserves accurate temporal 

information about signal critical points and riding waves. However, the ITSD has the 

limitations of choosing extrema points while there are various successive data points 

with the same extrema value. For overcoming this issue, the WiVi function is 

utilized.The WiVi represents the signal using a bilinear time-frequency 

representation known as Cohen's class of time-frequency distributions and 

calculates the distribution measure, which identifies and distinguishes the different 

frequency components present in the signal. Hence, the WiVi-ITSD allows for 

automated and objective selection of extrema points, which minimizes the reliance 

on manual perception. The steps involved in WiVi-ITSD are illustrated as, 

Extrema point calculation: Extrema points in a signal refer to the locations in which 

the signal reaches its maximum or minimum values. The extrema points of )(S is 

estimated utilizing WiVi ),( fTWV m  at time )( mT and frequency )( f  is, 

   
dExpTSTSfTWV

fq

mmm

)2(
*2(**)2(),(

 
  (13) 

Here, the input source signal at )( mT  is depicted as )( mTS , the complex conjugate of

)( mTS  is indicated as )(* mTS , the time-lag parameter is signified as  , and the 

frequency content of the distribution is determined as
)2( fq

Ex


. 

The continuous extreme points ],.......3,2,1[ Hh   are defined by the interval ],[ 1hh  . 

Baseline Extraction: This aims to separate )(S  into 2 components, namely )(L  and

)(H . The baseline component (low-frequency behavior of the signal) is depicted as

L . Piecewise linear Residual Component (PRC) (high-frequency in the signal) is 

signified as H . This isolation process is given as, 

HLS        (14) 

Piecewise Linear Baseline Extraction Operator: This operator is utilizedfor 

estimating the baseline signal within each interval between consecutive extreme 
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points and their time intervals. The   controls the PRC’s amplitude and can be 

adjusted for balancing the contribution of baseline and PRC. 

)(11 hhhhhh SSSSLLLLS        (15)
 

 
12211 )1())((   hhhhhhhhh SSSSL 
  (16) 

Here, the baseline extraction signal within the interval ],[ 1hh  of continuous 

extreme points is signified as LS , and coefficients that control the amplitude of the 

baseline extraction signalare depicted as hL  and 1hL . 

Recursive Decomposition:It is the iterative process of decomposing the signal )(S  

into a series of PRCs and a residual component )( rcH , it is expressedas, 

]........[ 4321 rcHHHHHS 
    (17)

 

Hence, the decomposed signal is defined by SigD .  

3.3.2.1. Scalp Map Generation 

A process in which visual representations known as scalp maps are generated based 

on the decomposed signals SigD  is named scalp map generation.These scalp maps 

give spatial information about the distribution of brain activity across the scalp. 

When EEG signals are recorded, electrodes are placed on the scalp at specific 

locations for measuring the electrical activity of the brain.The voltage fluctuations 

generated by the underlying brain regions are captured by each electrode.The 

scalp map visualizes the distribution of these voltage fluctuations across different 

electrode locations on the scalp. For generating scalp maps, SigD  are typically 

plotted as color-coded topographical maps. A dot represents each electrode's 

location on the scalp, and the color intensity or contour lines on the map indicate the 

magnitude or power of the decomposed signal at each electrode location. The scalp 

map is denoted as MapSC , and it is illustrated in Figure 2.  

 

Figure 2: Scalp map 
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3.3.3. Band separation  

The decomposed signals )( SigD  are further separated into diverse frequency bands. 

These frequency bands, such as alpha, beta, gamma, theta, and delta depict specific 

ranges of frequencies that are relatedto different brainwave activities. Hence, the 

brainwave activities within each frequency range can be analyzed.  

The frequency ranges relatedtoeach band are mentioned as,  

Alpha Band (8-13 Hz): It is often associated with relaxed and calm states and is 

observed in the posterior regions of the brain. 

Beta Band (13-30 Hz): It is relatedto active and alert mental states. It is observed in 

the frontal and central regions of the brain. 

Gamma Band (30-100 Hz): It is associatedwith high-frequency brainwave activity 

and is associated with complex cognitive processes, including perception, memory, 

and consciousness. It is observed in various brain regions. 

Theta Band (4-8 Hz): It is relatedto relaxation, daydreaming, and creativity. Theta 

activity is observed in the brain’s frontal and temporal regions. 

Delta Band (0.5-4 Hz): It is relatedto deep sleep, unconsciousness, and restorative 

processes. It is observed in the central and posterior regions of the brain. 

Mathematically, the band separation is described as,  

},,,,{ dbtbgbbbabSig GGGGGD 
    (18)

 

After separating )( SigD  into different frequency bands, the Weighted Directed 

Functional Brain Network Construction (WDFBNC) and the ILD are executed.  

 

3.3.3.1. Weighted Directed Functional Brain Network Construction  

Capturing the functional connectivity patterns between different brain regions 

based on the frequency information from each band ),,,,( dbtbgbbbab GGGGG  is the aim of 

WDFBN.It provides a comprehensive view of the functional connectivity patterns 

between different brain regions across specific frequency bands;thus, important 

insights into the interactions of brain regions can be examined. The construction of 

WDFBN involves the succeeding steps: 
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Define brain regions:First, the specific region of interest within the brain is 

identified, which is represented as nodes in the network.  

Calculate connectivity measures:Based on the frequency-specific information 

extracted from the EEG signals, the functional connectivity between pairs of brain 

regions is calculated. This is expressedas, 

)(*)(

)(
)(

2

ff

f
fC

yyxx

xy





     (19)

 

Here, the coherence measure between two signals at frequency )( f is depicted as

)( fC , the relationship between the signals in the frequency domain is signified as

)( fxy , the distribution of signal power across different frequencies is given as )( fxx

, and the distribution of signal power across different frequencies is depicted as

)( fyy . 

Assign weights: The weights are assigned to the edges connecting the nodes in the 

network. The strength of the functional connectivity between the corresponding 

brain regions is depicted as the weights )(Wt . The weight assignment process is 

given as,  

)(

)(

CMax

fC
Wt 

      (20)
 

Here, the maximum coherence value across all connections is signified as )(CMax . 

Directionality: The directionality of the edges in the network is determined. 

Identifying the direction of information flow between brain regions is included in 

this step. This is described by,  

)()()( fff pqpq  
     (21) 

Here, the average phase difference at frequency )( f  is indicated as )( f . 

The edge’sdirectionality is determined by: 

If 0)( f , then the edge from node p  to node q  is considered as directed. 

If 0)( f , then the edge from node q  to node p  is considered as directed. 
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Network representation: Represent the WDFBN as a graph, which is displayed in 

Figure 3, where nodes and edges represent brain regions and functional 

connections betwixt them, respectively. The weights and directionality of the edges 

are integrated into the network representation. 

 

Figure 3: Illustration of WDFBN 

3.3.3.2. Isoelectric Level Detection 

For identifying the baseline activity in each band ),,,,( dbtbgbbbab GGGGG , the ILD is 

done. This baseline represents the absence of significant brainwave activity. By 

detecting baseline, it becomes possible to differentiate between periods of 

brainwave activity and without significant activity. This information is useful to 

analyze the EEG signals and extract relevant features for further analysis. The 

baseline activity is estimated as,  

The time window )(wT  is defined, and the average value )( AvgILD  within this time 

window is calculatedby,  

 )]([*
)(

1
wT

sn
ILDAvg

     (22)

 

Here, the number of samples within the time window is signified as )(sn ,   )(wT

represents the sum of all samples in the window, and the estimated baseline in each 

band is depicted as AvgILD . Any deviations or abnormalities from this baseline can 
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provide important insights into the brainwave activity associated with different 

mental disorders.  

3.4. Feature extraction 

From different sources, namely 2D-GFT, Scalp map, ILD, and WDFBN, the significant 

features are extracted. The extracted features are detailed as,  

Sub-band energy, Sub-band fractional energy, Spectral flatness, Spectral 

brightness, Spectral roll-off, Total EEG energy, Spectral centroid, Spectral spread, 

Short-time energy, Spectral entropy,  Maximal peaks of each sub-band, Spectral 

flux, and Zero cross rate are extracted from 2D-GFT. These features render the 

frequency components, energy distribution, and temporal variations 

relatedtodiverse mental disorders. 

The activity power spectrum, Mobility, Fluctuations, Higuchi fractal, Power spectrum 

density, Lyapunov exponent, Lempel-Ziv complexity, and Teager energy operator 

are extracted from the Scalp map. Collectively, these features give valuable insights 

into functional characteristics, irregularities, and abnormalities relatedto mental 

disorders.  

Interhemispheric asymmetry, Positive area, Absolute amplitude, Negative area, 

Total area, Absolute total area, Cross-correlation, Peak to Peak, RMS amplitude, 

energy, entropy, energy and variance of auto-covariance, variance, median, mean, 

skewness, standard deviation, and kurtosis are extracted from ILD. These features 

render information about the interhemispheric differences, functional connectivity, 

amplitude characteristics, energy distribution, temporal structure, and statistical 

properties of brain activity.  

Node in-degree, Node out-degree, Node in-strength, Node out-strength, Global 

efficiency, Local efficiency, Betweenness centrality, Phase Lag Index, Magnitude 

square coherence, and Modularity are extracted from WDFBN. These features 

specify the connectivity patterns, information flow, integration, efficiency, centrality, 

synchronization, and modular organization of the functional brain network.  

Hence, the extracted features )( FZ are depicted as,  

},.......,,,{ 321 zF ZZZZZ 
     (23)

 

3.5. Feature selection  

For minimizing the data’s dimensionality and enhancing the classification system’s 

efficiency, the selection of the most required features from )( FZ  is essential. For 
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optimal feature selection, the ADM-BEO algorithm is utilized. The conventional BEO 

attains superior optimal solutions with a minimal number of iterations. However, it 

has the drawback of premature convergence towards local optima and limited 

exploration of the search space. For addressing this problem, the Adaptive Mutation 

(ADM) factor is incorporated with BEO. The ADM operation disturbs the position of 

the population, which allows individuals for escaping from local optima and 

exploring the search space’s new regions. So,the search space’s more extensive 

exploration is allowed, which enables the algorithm to discover better optimal 

solutions that may be located in unexplored regions.The steps of ADM-BEO are, 

Selecting stage 

Firstly, the bald eagle population is initialized. In this, the extracted features )( FZ are 

considered as the Bald eagle. This is given as,  

},.......,,,{ 321 zF ZZZZZ 
     (24)

 

Next, the fitness function )(Ft is defined. In this, the maximum classification accuracy

)( AccClMax  is the fitness function. This is described by, 

)( AccClMaxFt 
      (25)

 

The bald eagle selects the best location within the selected search space for the 

hunting process, and it is mathematically given as,  

)( iMeanBest QQRgQQ 
      (26)

 

Here, a random number from 0 to 1 is indicated as R , g  is the parameter that 

controls the position changes, Q refers to the new position, BestQ denotes the best 

location, MeanQ  represents the mean position of all eagles, and the bald eagle’s 

current position is signified as iQ . 

Searching stage 

In this stage, to search for prey within the selected search space, bald eagles use a 

spiral movement pattern. Furthermore, for enhancing the exploration ability of the 

bald eagle, the ADM function )( ADM is used. The best position during this stage 

)( ,NewiQ is written as, 

ADMMeaniiiiNewi QQiXQQiYQQ   *)()()()(
1,   

 (27) 
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21 *  









itr

i
ADM

Max

itr

     (28) 

)(

)(
)(,

)(

)(
)(







YMax

iY
iY

XMax

iX
iX     (29) 

))(()()()),(()()( iCosiiYiSiniiX     (30) 

Randgi **)(         (31) 

Randii  )(       (32) 

Here, the next position of the bald eagle is depicted as 1iQ , )(iX  and )(iY  

represents scaling factors for controlling the movement, )(iX  and )(iY  are the 

values between -1 and 1,  XMax  and  YMax  are maximum absolute values of 

)(iX  and )(iY , correspondingly, )(i  and )(i  are random values between 0 and 1, 

the parameters for the change in the spiral shape is depicted as , iitr  represents 

current iteration, itrMax indicates maximum iterations, and the rate at which )( ADM  

increases with each iteration is determined as
1

 and 
2 . 

Swooping stage  

The bald eagle moves from the selected optimal position in the search space toward 

its target prey. All other points in the search space also adjust their positions 

towards the best point, which is, 

)()()()( 2111, BestiMeaniBestNewi QeQiYQeQiXQRandQ 
 (33) 

Where, the parameters that control the movement of the points toward the best 

pointare signified as
1e  and 

2e . Hence, the selected features )(
F

 are described as, 

},.......,,,{
321 zF

 
    (34) 

 The Pseudo code for ADM-BEO is given below: 

Input: Extracted features )( FZ  

Output: Selection of optimal features )( F  

Begin 

Initialize the optimization parameters
iQ , 

itrMax  
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Calculate the fitness function Ft  

For 1i to 
itrMax do 

Select search space by using 

)( iMeanBest QQRgQQ   

Search the prey in search space by using 

)()()()( 1, MeaniiiiNewi QQiXQQiYQQ    

Swoop prey by using 

)()()()(
2111, BestiMeaniBestNewi QeQiYQeQiXQRandQ   

If SatisfiedFt   

Return the optimal features 

Else  

1 itritr  

End if 

End for 

End 

3.6. Classification  

The selected features )(
F

 are inputted into FastExp-GRU.It classifies different types 

of mental disorders, including (a) Anorexia Nervosa, (b) Depression, (c) Bipolar 

Disorder, (d) Post Traumatic Stress Disorder, (e) Attention Deficit Hyperactivity 

Disorder, and (f) Schizophrenia. 

GRU has a smaller number of gates, which makes them computationally effectivefor 

training and use in real-time applications.However, the GRU suffers from an output 

offset problem that refers to the mismatch between the predicted and actual output, 

which can affect the accuracy of the system’s predictions. The proposed work 

alleviates this issue by utilizing FELU, which is a non-saturating activation 

function.FELUenhances the learning capacity of the network and mitigates the output 

offset problem. Furthermore, the FELU accelerates the network's computations 

leading to faster training times and potentially improved overall efficiency.Figure 4 

shows the architecture of FastExp-GRU. 
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Figure 4:Fast Exp-GRU architecture 

The selected features )(
F

 are given as the inputs, which are declared as, 

},.......,,,{
321 zF

 
     (35)

 

Update Gate )(UG :UG  determines the amount of the previous hidden state ))1(( lHd  

forward to the current time step )(l .  

))]1(),([*()( UGUG BiaslHdlwglUG  
   (36)

 

Using the FELU activation function, the UG  is computed, and is described as, 

   )2()(12
)(

LoglUGExp
lUG

    (37) 

 )2()( LoglUG       (38) 

Here, 
UGwg  and 

UGBias  are weight and bias ofUG , correspondingly, and scaling 

factor is depicted as .  

Reset Gate )(RG : RG  determines how much of the previous hidden state ))1(( lHd  

should be ignored while computing the new hidden state candidate )(Hd . It is 

described as,  
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))]1(),([*()( RGRG BiaslHdlwgFELUlRG  
   (39)

 

Here, weight and bias of RG  are depicted as
RGwg  and

RGBias , correspondingly. 

Hidden State Candidate )( dH : )( dH is the tentative value for the new hidden state at 

a time step )(l . It is calculated by combining the current input and ))1(( lHd , 

modulated by RG , which is given as, 
 

dHdH
BiaslHdlRGlwgFELUldH  )]1(*)(),([*()( 

  (40) 

Here, 
dH

wg  and 
dH

Bias  are weight and bias of )( dH ,correspondingly. 

Hidden State Update )(Hd :The )(Hd  is a combination of ))1(( lHd  and the )( dH , 

weighted by )(UG , which is given as, 

)(*)()1(*))(1()( ldHlUGlHdlUGlHd     (41) 

GRU’s final output is derived from the updated hidden state, and then the error value 

)(Er is calculated by,   

AcEr  Pr       (42) 

If 0Error , then a back-propagation process is not needed. If 0Error , then the 

back-propagation is performed by optimizing the weight values. 

The pseudo-code for FastExp-GRU is given as: 

Input: Selected features )( F  

Output: Classification of mental disorder  

Begin 

 Initialize parameters wg , Bias ,time step )(l , iteration z  

 Set 1z  

 While maxzz   

For Maxzto1 do 

   Compute update gateUG  

    
))]1(),([*()( UGUG BiaslHdlwglUG    

   EvaluateFELU activation function using 

    
   )2()(12

)(
LoglUGExp

lUG

    
   Compute reset gate RG  

    
))]1(),([*()( RGRG BiaslHdlwgFELUlRG    
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   Update hidden state Hd  

    

)(*)()1(*))(1()( ldHlUGlHdlUGlHd    

 If AcPr  

    Terminate 

   Else 

   1 zz  

   End if 

  End for  

 End while
 

 
Return mental disorder class

 
End  

Hence, the FastExp-GRU effectivelycategorizes mental disorders into 6 different 

classes, namely (i) Anorexia Nervosa, (ii) Depression, (iii) Bipolar Disorder, (iv) Post 

Traumatic Stress Disorder, (v) Attention Deficit Hyperactivity Disorder, and (vi) 

Schizophrenia. 

4. Results and Discussion  

Utilizing publically available data, the proposed approach’s performance is 

evaluated and in the working platform of PYTHON, the experiments were done. 

 

      (a) 
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      (b) 

 

     (c) 
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      (d) 

Figure 5: EEGSignal analysis of the proposed WIEDMD-FES 

The outcome of the respective phases of the proposed WIEDMD-FES is exhibited in 

Figure 5. The input EEG signal is depicted in Figure 5(a), a pre-processed signal is 

represented in Figure 5(b), the decomposed signal is displayed in Figure 5(c), and 

lastly, the signal is demonstrated with respect to several frequency bands in figure 5 

(d). 

4.1. Performance Analysis 

Here, the proposed WIEDMD-FES’sperformanceis validated.In this, for proving the 

proposed approach’s effectiveness,the performance and comparative analysis 

areperformed. 
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Figure 6: Comparative analysis of the proposed FastExp-GRU 

The proposed FastExp-GRU’s performance is analogized with prevailing 

approaches, namely GRU, Bidirectional Long Short-Term Memory (Bi-LSTM), LSTM, 

and Recurrent Neural Network (RNN) in Figure 6.The proposed FastExp-GRU is 

incorporated with FELU. The FELU’s property includes non-linearity and avoidance 

of saturation contributing to more efficient learning. Hence, the FastExp-GRU 

attained precision, recall, F-Measure, Sensitivity, Specificity, and MCC at the rate of 

97%, 97.92%, 97.81%, 97%, 96.98%, and 97.71%, correspondingly.However, the 

prevailing approaches acquire lower performance rates. 
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Figure 7: FPR and FNR comparison of the proposed FastExp-GRU 

The False Positive Rate (FPR) and False Negative Rate (FNR) of the proposed 

FastExp-GRU and the other prevailingstudies are contrasted in Figure 7. FELU 

enables the system to learn more intricate decision boundaries that can help reduce 

error by enhancing the model's ability for capturing and representing non-linear 

patterns in the data. Hence, the proposed FastExp-GRU withstands 4.28% of FPR and 

3% of FNR.Therefore, the proposed FastExp-GRU is an error-prone model. 
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Figure 8: Training time evaluation 

The training time of the proposed and existing techniques are analogized in Figure 

8. The network is allowed to learn faster and more efficiently by FELU’s linear 

approximation for positive inputs. The proposed FastExp-GRU completes the 

training process with 42173.97 ms. However, for training the data, the existent 

techniques require an average of 22047.04 ms. The analysis clearly shows that the 

proposed system has low time complexity. 
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Figure 9: Fitness vs. Iteration Comparison  

The fitness vs. iteration of the proposed ADM-BEO and existing algorithms, namely 

BEO, Coyote optimization algorithm (COA), Black Widow Optimization (BWO), and 

Water Wave Optimization (WWO) are evaluated in Figure 9. The ADM accelerates 

convergence by allowing individuals to quickly escape local optima.As a result, the 

proposed ADM-BEO converges to a better solution faster. Nevertheless,for attaining 

convergence, the existing techniques require more iteration.  

Table 1: Feature selection time validation 

Techniques Feature 

selection time 

(ms) 

Proposed ADM-

BEO 

7769.836 

BEO 15127.26 

COA 25324.59 

BWO 32040.93 

WWO 45617.03 

The feature selection time of the proposed and existing approaches are validated in 

Table 1.The inclusion of ADM potentially leads to better solutions with limited time. 
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Hence, the proposedADM-BEO selects the features with 7769.83 ms. However, for 

choosing the features, the existent method requires an average of 29527.45 ms. 

Hence, the proposed approach’s overall execution time is reduced. 

Table 2: Performance validation of the clustering efficiency 

 

Techniques 

Performance metrics 

Clustering time 

(ms) 

Accuracy (%) NMSE 

Proposed Ward-KNN 12568 98.92 0.2387 

KNN 19253 95.23 0.4581 

FCM 26498 93.61 0.5984 

KMA 32167 91.03 0.7138 

GMM 43981 90.97 0.8934 

The clustering efficiency of the proposed Ward-KNN and prevailing KNN, Fuzzy C-

Means (FCM), K-Means Algorithm (KMA), and Gaussian Mixture Model (GMM) is 

exhibited in Table 2. Ward Method considers the minimum variance distance, which 

improves the time efficiency of the imputation process (12568 ms). Furthermore, the 

proposed Ward-KNN potentially enhances clustering accuracy (98.92%) and 

reduces the normalized Mean Squared Error (MSE) (0.2387) by preserving the 

underlying patterns in the data.  

 

Figure 10: Accuracy comparison with related work 
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The detection accuracy of the proposed and existing approaches is demonstrated in 

Figure 10.The proposed approacheffectively addresses the missing values, assists in 

preserving the integrity and quality of the data, and understands the underlying 

patterns and characteristics in the EEG signals. Furthermore, the proposed 

approach potentially improves the classification accuracy (96.59%) by considering 

both temporal and spatial aspects of brain activity.  

5. Conclusion 

In this paper, a wearable IoT-based early and real-time detection framework for 

mental disorders using the FastExp-GRU algorithm is proposed. This work’s 

significance lies in addressing the lack of exhaustive research on the type 

classification of diverse mental health disorders utilizing wearable IoT devices. The 

proposed approach offers a comprehensive technique for mental disorder detection 

by merging signal processing approaches, feature extraction, and Deep learning 

classification. The proposed approach’s efficiency to detect and classify several 

mental disorders is demonstrated by its experimental evaluation. Utilizing publicly 

available datasets, the proposed WIEDMD-FES was evaluated. As per the analysis, 

WIEDMD-FES attained an impressive accuracy (96.59%). Moreover, for the 

framework, the training time was measured to be 42173.97 ms. Different types of 

mental disorders are effectively classified by the proposed WIEDMD-FES. Currently, 

it lacks a particular concentration on severity level estimation. In the future study, 

expanding the proposed approach’s capabilities to include the estimation of severity 

levels of mental disorders should be concentrated. 
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