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Abstract: Land use and land cover (LULC) products are important for comprehending 

anthropogenic interactions with the environment. The precise information about LULC of our 

environments is essential for various applications such as the monitoring and management 

of natural resources, producing development plans, and global change assessments. 

Regrettably, recent wall-to-wall LULC maps and statistics of Nigeria are not available. This 

work presents the spatiotemporal wall-to-wall LULC maps and estimates of Nigeria for 2000, 

2010, and 2020.The study used 6 LULC classes in he classification process. The supervised 

classification was used to classify the LULC in the satellite imageries. With ground-truthing, 

the accuracy of the classification was also evaluated and validated.From the classification 

result, the grassland revealed the highest percentages throughout the time series as 

compared to other classes of LULC. It recorded the highest rate in 2010 at 28.06%. The LULC 

classification accuracy assessment result for 2000, 2010, and 2020 showed overall 

accuracies of 94%, 91%, and 95% respectively. Similarly, the kappa coefficients were 0.93, 

0.89, and 0.94, correspondingly. There is significant variability regarding LULC in Nigeria. 

The fluctuations in the LULC implied both gain and loss in the LULC throughout the study 

epochs. The levels of accuracy obtained in the classification are highly acceptable as they 

are higher than 85% stipulated as the minimum accuracy required for research of this 

nature. Furthermore, the kappa coefficients indicate an almost perfect correlation between 

the classified pixels and ground-truth data. 

Keywords: Anthropogenic, classification, global change, LULC, satellite imagery. 

 

Introduction 

Land use/Land cover (LULC) is essential for understanding the interactions of human 

activities with the environment (Ojha et al., 2013). It influences the ecosystem’s role at all 

spatial scales (Song et al., 2018; Peters et al., 2019). The LULC pattern of a region is an 
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outcome of natural and human-induced factors (Mohammed et al., 2013; Shah et al., 2017). In 

other words, the alteration in LULC characteristics is usually regulated (Hurtt et al., 2011) by 

several socio-economic and biophysical elements (Shah et al., 2017; Popp et al., 2017) such 

as modifications in population, climate (Mohammed et al., 2013; IPCC, 2014), agronomic 

food demand (Alexandar et al., 2016), and others. Generally, the natural causes of LULC 

change may differ– varying from a gradual transformation at a time or a sudden disastrous 

occurrence at different extents and times. 

Urbanization is a major driver of LULC alterations due to land utilization foressential 

infrastructure. Converting land from one LULC class to another is necessary for building 

roads, houses, railways, and airports, etc. Also, agricultural land expansion is a primary 

source of LULC change and deforestation. Furthermore, mining is very intensive and 

destructive. If it occurs in forest areas, it involves removing substantial trees both at the 

extraction of minerals and creation of access road. Similarly, deforestation worsens with 

wood as fuel in mining operations. Besides, mining activity encourages development that 

may cause population growth with resulting deforestation. Deforestation may arise due to 

untenable logging (Houghton, 2005). Sufficient evidence exists that the entire world is facing 

an ecological crisis due to heavy deforestation or LULC transformation. Thus, monitoring 

land modification is essential for evaluating global change impact on land and the 

consequence of land change on the ecosystem (Foley et al., 2005; Turner, Lambin, and 

Reenberg, 2007; Güneralp and Seto, 2013). By and large, the assessment of land alteration is 

a function of available classified spatial information supported by auxiliary variables 

(Verburg et al., 2015; Heck et al., 2018). 

Nigeria is known for heterogeneous landscapes and complex land change processes, 

which may be linked mainly to cropland expansion, urbanization, and industrialization, etc. 

Regrettably, interest in studying country-wide LULC and its change is still very low in 

Nigeria. The available record indicates that only two major nation-wide LULC studies are 

available. The Nigeria RaDAR (NIRAD) project of 1976/78 offered the first national land 

use/land cover information. Yet, it has certain shortcomings (see Adeniyi, 1984; FORMECU, 

1996). The second attempt to assess the LULC and vegetation in Nigeria was by the Forestry 

Management and Coordinating Unit (FORMECU) in 1996. The FORMECU project affords an 

update of the database created through the NIRAD project. However, evidence in the 

literature suggests that products from the FORMECU has its own flaws. Above all, both 

products and most maps used in Nigeria are obsolete. The implication is that any decision 

based on those maps will not reflect the current realities. Thus, there is an urgent need to 

update the wall-to-wall LULC map and estimate of Nigeria. 

Many methods, such as the satellite-based and conventional terrestrial mapping are 

frequently used for spatiotemporal mapping of LULC. The terrestrial mapping is generally a 

labor-intensive, time-consuming and money-demanding method of mapping vast areas. It is 

however a direct mapping technique that can produce maps at various scales and degrees 

of precision. Also, subjectivity may be present in mapping based on ground or field 

method. Nevertheless, mapping LULC using satellites and aerial photography is more 

economical, time-efficient, spatially extensive, and multi-temporal. In the past, satellite data 

had a   relatively lower spatial resolution than maps created by terrestrial surveys. Satellites 
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now offer data at multiple spatial and temporal scales using remote-sensing technology 

(Scaioni et al., 2014). Compared to other techniques like ground surveys, remote sensing 

offers the chance for rapid acquisition of LULC information at a significantly lower cost 

(Chen and Wang, 2010). For LULC mapping, satellite images provide high spatial coverage 

and multi-temporal product (Wittke et al., 2019; Viana, Girão, and Rocha, 2019).  

Recently, there has been a lot of interest in using Machine Learning on remotely 

sensed imagery for LULC mapping (Adam et al., 2014; Maxwell, Warner, and Fang, 2018). 

Two subtypes of machine learning techniques have been identified, including supervised 

and unsupervised. Common examples of supervised classification techniques are Support 

Vector Machines (SVM), Random Forests (RF), Spectral Angle Mappers (SAM), Maximum 

Likelihood Classifiers (MLC), fuzzy logic, and others. Furthermore, some examples of 

unsupervised classification techniques are fuzzy c-means algorithms, K-means algorithms, 

and ISODATA (iterative self-organizing data) (Lambin, Geist, and Lepers, 2003). Recent 

research in land use and land cover classification has attracted more sophisticated methods 

such as ANN, SVM, RF, and others. As a result, a lot of research has been done on LULC 

modeling using various machine-learning (Teluguntla et al., 2018; Zhang et al., 2019) and 

comparing them (Li et al., 2016; Camargo et al., 2019). Employing remote sensing coupled 

with Geographic Information System is a powerful tool for analysis and visualization (Rekha 

et al., 2017).  

It is clear how important it is to have accurate information about LULC and how it is 

changing in different endeavorus. Because of its wide spatial coverage and multi-temporal 

availability, satellite data have shown greater benefits in that regard (Wittke et al., 2019). In 

the application of Machine Learning to   extract thematic information from satellite data, the 

supervised algorithms are common methods (van Leeu-wen, Tobak, and Kovács, 2020). For 

example, Balázs et al (2018) extracted data from Landsat 7 using Random Forest and Support 

Vector Machine and achieved overall accuracies of over 90%. Also, van Leeuwen, Tobak, 

and Kovács (2020) detected the LULC classes with inland excess water signified by two 

water classes. In the process, they compared the results of SVM, RF and a deep ANN based 

on overall accuracy and Cohen's Kappa. In a similar study, Abbas and Jaber (2020) used 

WorldView-2 imagery to produce the land use classification in Hilla city, Babylon, Iraq 

through a comparison among different algorithms. They also employed the Support Vector 

Machine and Maximum Likelihood. The result revealed that the Support Vector Machine 

method has the most significant overall accuracy equal to 94.48% with kappa co-efficient 

equal to 0.90. Of course, these values are much better and higher than those of Maximum 

Likelihood algorithm in estimating and extracting Land cover/Land use. Yousefi et al. (2011) 

mapped the LULC in Iran's Mazandaran province using Landsat ETM+. They evaluated nine 

distinct supervised classification techniques: binary code, minimum distance, spectral 

information divergence, neural network, spectral angle mapper, maximum likelihood, SVM, 

mahalanobis distance, and parallelepiped. According to the results, the SVM classifier 

outperforms the other classifiers in terms of accuracy. Like many previous LULC studies, we 

created the LULC map of Nigeria using Geographic Information System (GIS) and satellite 

remote sensing at 10-year intervals between 2000 and 2020. 
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Objectives 

The broad aim of this work is to carry out the spatiotemporal mapping and estimation of the 

wall-to-wall LULC of Nigeria for 2000, 2010, and 2020. The specific objectives include  

i. LULC classification of satellite data 

ii. LULC classification accuracy assessment 

iii. LULC change detection 

 

Data and Methods 

Study location 

Nigeria is in the western region of Africa between latitudes 04°N and 14°N of the 

Equator and longitudes 03°E and 14°E of the Greenwich Meridian.  It occupies an area of 

923,768km2, of which water bodies cover 13,000 km2 while physical land covers 

910,768km2. Geographically, Nigeria shares common boundaries with Niger to the north, 

Chad and Cameroun to the east, the Atlantic Ocean to the south, and the Republic of Benin to 

the west. The country's total land boundaries are 4,047km in length, comprising 1,497km 

with the Niger Republic, 87km with Chad, 1,690km with Cameroun, and 773km with Benin. 

Nigeria's coastline spans over 853km, with the Niger Delta portion covering about 80% of 

the entire coastal length. The use of Nigerian landmass is such that 15% is for pastures, 10% 

for forest reserve, 10% for settlements, and the remaining 30% is considered uncultivable 

for various reasons (Federal Ministry of Environment, 2001).  

Nigeria operates a Federal system of government with one stable central 

government, 36 states and a Federal Capital Territory (FCT). The States (and FCT) are 

subdivided into 774 Local Government Areas (and Area Councils) for grassroots 

administration. Furthermore, six geopolitical zones cover the 36 States (North–West, North–
Central, North–East, South–East, South–South, and South–West) mainly for political 

purposes. Also, Nigeria is the most populous country in Africa. Information from the National 

Bureau of Statistics indicates that Nigeria's population as of 2020 was 206,152,701. A major 

number of people in this population dwell in the urban centers. Urbanization in Nigeria is 

influencing LULC change with its main impact being deforestation and forest degradation. 

Nigeria also has two seasons—the dry and the wet. It is also characterized with a 

tropical climate with comparatively high temperatures. In the far south, the average 

maximum temperature is 32°C, whereas in the north, it is 41°C. The south's average 

minimum temperature is 21°C, while the north's is less than 13°C. Nigeria receives 500 mm 

of rainfall in the north and 4,000 mm in the southeast each year.  Nigeria's coastal and 

southeast regions receive a lot of rainfall, which leads to the growth of rainforests there. The 

northern portion, on the other hand, experiences less rainfall and features progressively 

drier vegetation zones. Nigeria is also home to a variety of physiographical units and 

climatic regimes, which result in a wide range of ecological zones. Semi-arid, dry sub-

humid, sub-humid, humid, extremely humid, ultra-humid (flood), mountainous, and plateau 

are all included in this. The savanna (Sahel, Sudan, Guinea, and Derived), lowland 

rainforest, freshwater swamp forest, mangrove forest and coastal vegetation, and montane 

forest zone are the five zones that can be streamlined due to their similar 

characteristics.Montane, freshwater and saltwater swamp, mangrove, rain forest, Guinea 
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savanna, Sudan savanna, and Sahel savanna are the seven major, discrete zones into which 

Nigeria's vegetation can be divided. Nigeria's coastline is home to both freshwater and 

saltwater swamps. The tropical lowland rainforest, a dense evergreen vegetation of tall 

trees with an undergrowth of small trees, shrubs, and herbs, replaces the mangroves along 

the lagoons. Nigeria's largest vegetation belt is the Guinea savanna. It is made up of both 

grass and trees, with trees predominating in areas with sparse populations. Regrettably, the 

progressive decline in Nigeria's forest over the past few decades poses extreme pressure 

on the conservation of its wild biotic resources as it continues to experience a loss of   

natural habitats (Okeke and Omali, 2016). For instance, northern Nigeria suffers a high rate 

of overgrazing and clearance of trees for firewood, while southern Nigeria suffers from 

logging. 

The early post-independence (the early 1960s) economy of Nigeria was based on 

agriculture as demonstrated by its contribution to the GDP, and employment opportunities. 

Though the oil sector is now the most significant source of the national revenue, nearly 60% 

of the labour force in the country is engaged in agriculture. Furthermore, agriculture is the 

basis of resources used in the processing industries and a major source of the country's 

foreign earnings. The core of Nigeria’s agricultural policy is self–sufficiency in fundamental 

commodities, especially those that it has proportional benefits in local products such as 

tuber crops (Soludo, 2006). The agricultural sector is likely to retain its relative dominance 

in terms of the total labour force for the economy of the country for a long time. 

Consequently, more forests and savanas are likely to be converted for agricultural use in the 

future. 

 

Input data 

The MODIS (Moderate Resolution Imaging Spectroradiometer) imagery was used in 

this study. The MODIS is onboard the Terra (EOS AM–1) and Aqua (EOS PM–1) plat-forms, 

launched on December 18th, 1999 and May 4th, 2002 respectively (Barnes, Xiong and 

Salomonson, 2003). The timing of Terra and aqua as the orbits the Earth is such that in the 

morning, Terra crosses the equator from north-south, and aqua crosses the equator from 

south to north in the afternoon. MODIS instrument provides 36 spectral bands   ranging in 

wavelength from 0.46 μm to 14.4 μm (Masuoka et al., 1998). Also, MODIS has four refractive 

objective assemblies, one for each of the Visible (VIS), near-infrared (NIR), shortwave and 

mid-wave infrared (SWIR/MWIR), and longwave infra-red (LWIR)   spectral regions 

(Ardanuy, Han, and Salomonson, 1991). MODIS has a swath width of 2,330km across the 

track by 10km along the track at the nadir. Of course, this exists over the sensor viewing 

angles of ±55° cross-track and the effective view angle on the ground being slightly larger 

owing to the Earth's curvature.  

This study employed the MOD13A1 Version 6 product with a 16-day compositing 

period, which offers Vegetation Index (VI) values at a per-pixel basis of 500m spatial 

resolution. The four tiles of MODIS 13A1 datasets that covers Nigeria used in this analysis 

were from the NASA website (www.earthdata.nasa.gov). The application of MODIS data in 

diverse areas may be attributed to two important reasons. First, it is characterized by daily 

and high-quality data covering large areas of land. Second, it offers a good prospect for 
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monitoring and analyzing regional land surface processes. This is especially true for NDVI 

vegetation analysis, for which MODIS provides a standard product. Since the nature of land 

cover monitoring requires images of a different time, and change detection analysis is 

carried out most effectively with more than one image of a study area, three-time–series of 

the MODIS 13A1 data every 16 days at 500m spatial resolution as a gridded level–3 product 

in the Sinusoidal projection were acquired (i.e., for 2000, 2010, and 2020).  

The product contains two principal vegetation layers (i.e., the Normalized Difference 

Vegetation Index [NDVI] and the Enhanced Vegetation Index [EVI]).  The NDVI is a 

'normalized' transformation of the NIR to RED reflectance ratio, ρNIR/ρRED, designed to 

standardize Vegetation Index (VI) values to between –1 and +1. It is based on the     

following equation. 

        NDVI = (ρNIRρRED)(ρNIRρRED)                                                                                        [1] 
 

As a ratio, the NDVI has the advantage of minimizing certain types of the band–correlated 

noise and influences due to variations in direct/diffuse irradiance, clouds, and cloud 

shadows, sun and view angles, topography, atmospheric attenuation, calibration and 

instrument–related errors.  

  

Data preparation 

i. Pre–processing of the satellite data 

MODIS datasets are typically delivered as HDF (hierarchical data format) 10 by 10 

arc-degree– tiles projected in the Sinusoidal coordinate system. However, both HDF and 

Sinusoidal projected data require further processing to be compatible in different 

processing environments. Thus, the MODIS datasets were pre-processed to glue the tiles 

and coerce them into a more usable format. Then, they were projected from the Sinusoidal 

to WGS 1984 and converted to the GeoTIFF format. Furthermore, time series analysis of 

imageries requires that imageries of various years should overlap each other at the pixel 

level. Accordingly, the imageries were co-registered with minimal error. At this stage, all-

time series imageries were made to completely overlap with each other. 

 

ii. Mosaicking and resampling of MODIS datasets 

As stated earlier, four tiles of MODIS 500m data covers the study area. Following the 

download and completion of all necessary preliminary preparations, the four tiles were 

mosaicked into a single image using the mosaicking tool. The parameter files (a list of files 

that must be adhered to) were generated. Furthermore, the dataset was subjected to 

resampling because only the values of the component covering the area of interest were 

used for the study instead of the full MODIS image. This is because when an image is 

reprojected to a different coordinate system, it usually has an image pixel grid in alignments 

other than the original image. Hence, the resampling   process was used to reproject and cut 

the mosaic using the parameter file that resampled the image to the target coordinate 
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system (i.e., the local coordinate system). A value was computed for every pixel in the new 

image through sampling (interpolation) over a neighborhood of pixels from the conforming 

position in the original image. It is usually preferable to resample a given set of rasters to a 

specific image resolution and map projection before merging and analyzing them. 

 

iii. Data sub-setting, index value, and determination of NDVI thres hold 

We got the subset images of the study area by masking the boundary of the study   

area (Nigeria) from the mosaicked imageries to limit the ensuing analysis and enable quick 

processing (Okeke et al., 2008). MODIS-NDVI values provided by NASA data were 

multiplied by 10,000. Relative to the area of interest, the values however vary from 2000 to 

over 10,000. We maintained this range of value at the initial stage. Yet, multiplying the 

dataset by a scale factor (0.0001) converts the image values to the index values (-0.2 to 0.9). 

Additionally, we determined the NDVI threshold values that could distinguish between the 

different LULCs using ground verification data. For instance, NDVI values between 0.6 and 

1.0 signify high vegetation. On the other hand, low vegetation and non-vegetation indicate 

lower values. 

 

iv. Mapping and estimation of LULC in Nigeria 

a. Image Classification  

Image classification is one of the most effective approaches of processing satellite 

imagery (Srivastava et al., 2012). Various land cover features reflect the visible and infrared 

light in different ways (Navalgund, Jayaraman, and Roy, 2007). Image classification was used 

in this study to detect, identify, and classify the images of different features based on the 

actual classes they represent on the ground. The image classification can result in various 

thematic maps of the study area (Lillesand and Kiefer, 2000). Using the supervised 

classification method, we classified the imageries into six classes (see table 1) to create 

LULC maps. The SVM algorithms, which was used generally aims to achieve the optimal 

separating hyper plane that minimizes misclassifications. SVM incorporates kernel functions 

that translate the original object space into a higher dimensional space, giving the original 

object space nonlinear boundaries for data that is linearly inseparable. SVM is a commonly 

used algorithms in machine learning applications and has been widely applied to classify 

remote sensing data.  

 

Table 1. LULC classes  

Lulc Description 

Forest land All land with woody vegetation that meets 

the criteria used to designate Forest Land 

falls into this category. 

Cropland Cropped land and agroforestry systems 

where the vegetation structure falls below 

the forests' thresholds. 

Grassland This includes rangelands and pasture land 
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that are not considered Cropland. Also, 

lands with herbs and brushes, grassland 

from wildlands to recreational areas, and 

agricultural and silvi–-pastoral systems.   

Wetlands This includes areas of peat extraction and 

land that is saturated by water for all or part 

of the year (e.g., peatlands). It does not fall 

into other land–uses. It also includes 

reservoirs as managed subdivisions and 

natural rivers and lakes as unmanaged 

subdivisions. 

Settlements This includes all developed land of any size 

unless included under other categories. 

Other lands The LULC in this class includes bare soil, 

rock, ice, and all land areas that do not fall 

into other categories.  

 

b. Ground truthing 

Ground-truthing (field verification) is to certify that the information generated from an 

image is correct and truly represents the features on the ground. The classification   

accuracy does not depend on the classifier alone but also on the training and validation 

datasets (Pelletier et al., 2017), which can significantly influence estimates of land change 

(Pontius and Li, 2010). As a result, reference data from sources more precise and accurate 

than the classified data were used (Okeke and Karnieli, 2006); including a topographic map 

of Nigeria and the Google Earth image. 

 

c. Classification accuracy assessment 

Classification accuracy assessment is vital in image classification for the users to 

efficiently use the result (Okeke and Karnieli, 2006). The reason is that there is 

noclassification created from remote sensing data that can be completely accurate as errors 

originate from different sources including the classification algorithm itself. The two broad 

methods of assessing a classified image accuracy are the confusion (error) matrix and the 

Receiver Operating Characteristic (ROC) curve. We used the confusion matrix in this study. 

Here, information about accuracy assessment came in an error matrix. It shows the number 

of pixels attributed to a specific LULC class relative to the actual class on the ground (Foody, 

2002).  

The error matrix used in this study depended on independent reference datasets.  

Reference data can come from three sources including field surveys, finer-resolution 

images, and more accurately classified images or maps. In other words, reference data 

came from data sources assumed to be more accurate and precise than the data to be 

classified (Okeke and Karnieli, 2006). This study utilized reference data obtained from high-

resolution images (Google Earth). The most significant elements in this table are user 

accuracy, producer accuracy, overall accuracy, and the kappa coefficients. 



Scopus Indexed Journal                                                                                 June 2025 

 
 

224 

v. LULC change detection 

Change detection employs various approaches in different application areas. The 

selection of appropriate technique depends on knowledge of the algorithms, the 

characteristics of the study area, and the accurate registration of the satellite input data. It 

may be categorized into two main groups: pre-classification and post-classification methods. 

The pre-classification change detection involves matching pixels for a pixel to process 

multi-date imageries of the same area to generate changes. The process in this case involve 

digitally matching and correlating the digital number (DN) of cells in a certain image with 

the DN value for the image of another time using change detection algorithm. The second 

method is the post-classification change detection. It is one of the most common change 

detection approaches, in which, the multi–temporal image of the same area is digitally 

classified. Several plusses are associated with this technique. It reduces sensor, atmospheric 

and environmental differences. The issue of normalizing between two dates in terms of 

atmospheric and sensor differences, is of course, lessened when data from two dates are 

classified independently. The post–classification method was used in this paper. After 

classifying the MODIS datasets and the accuracy assessment was carried out, two 

independent layers were overlaid. Through the use of pixel–by–the pixel comparison 

algorithm, the pixels that indicate changes between images were determined (Kohavi and 

Provost, 1998). In this way, changes were generated based on the classes   rather than on 

differences in DN values. 

In order to determine the gross losses and gains in area extent of each LULC class, a 

change detection algorithm was first applied to the two LULC maps (2000 and 2010), from 

which the relative net gains/losses in each LULC class were derived (Hussain, 2013). After 

processing the results, the outputs were divided by the initial LULC area extent, or the area 

extent in 2000. The relative net changes (gains and losses) as a percentage were calculated 

by multiplying the results by 100. The LULC maps of the years 2000 and 2010, 2010 and 2020 

were the three combinations of LULC maps that were created here. The three periods of our 

LULC change analyses are represented by these three combinations.  

The following "loss" or "gain" was used to describe a change in a particular LULC 

class during each period. A change in LULC class—for instance, LULC class A1 at time 1 to 

LULC class A2 at time 2—was classified as a transition from A1 to A2, or a loss in LULC class 

A1 and a gain in LULC class A2. We determined the gains and loss-es of the LULC classes in 

2000–2010, and 2010–2020 based on this method.  Additionally, the annual rate of change for 

each LULC class during each transition period was determined using Equation (1) below. Annual Rate of Change = (A2 − A1) A1(Y2 − Y1)                                          [2] 
where A1 represents each LULC class's initial area extent for each period in year 1 (Y1), and 

A2 represents each LULC class's final area extent in year 2 (Y2). 
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Results 

Maps and estimates of land use/land cover in Nigeria  

The result of image classification of each MODIS–NDVI data used in this study is the LULC 

estimates and maps depicting the six LULC categories of the study area as they were in 

2000, 2010, and 2020 (see table 2 and fig. 2). The LULC maps in Figure 2 compare the 

conditions in Nigeria in 2000, 2010, and 2020 In essence, we saw the LULC categories 

expand and contract simultaneously. 

 

Table 2. Areal extent (in sqkm) and percentages of LULC of Nigeria during the study 

epochs 

  Class   2000 %   2010 %   2020 % 

Forest 

  

132746.00   14.37 

  

143189.80   15.50 

  

151892.60   16.44 

Grassland 

  

255740.30   27.68 

  

259247.10   28.06 

  

251095.30   27.18 

Cropland 

  

202257.80   21.89 

  

222534.30   24.09 

  

203197.30   22.00 

Other land 

  

176302.30   19.09 

  

175926.30   19.04 

  

171789.10   18.60 

Built–up 

  

101034.80   10.94 

    

91874.80     9.95 

  

106198.30   11.50 

Wetland 

    

55683.50    6.03 

    

30992.30     3.35 

    

39592.05    4.29 

Total 923764.50    100 923764.60     100 923764.60     100 

 

 

 
Figure 1. LULC map of Nigeria for the three epochs of study 

The percentage coverage of the forest for 2000, 2010, and 2020 were 14.37, 15.55, and 

16.44 respectively. The percentage coverage of the grassland for 2000, 2010, and 2020 were 

27.68, 28.06, and 27.18 respectively. From the figures presented, it is obvious that    

grassland has the highest percentages throughout the time–series as compared to other 

classes of LULC. It recorded the highest percentage in 2010. Also, the percentage coverage 
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of the cropland for 2000, 2010, and 2020 were 21.89, 24.09, and 22.00 respectively. The 

percentage coverage of the other land for 2000, 2010, and 2020 were 19.09, 19.04, and 18.60 

respectively. The percentage coverage of the built–up for 2000, 2010, and 2020 were 10.94, 

9.95, and 11.50 respectively. The percentage coverage of the wetland for 2000, 2010, and 

2020 were 6.03, 3.35, and 4.29 respectively.  

 

Classification accuracy assessment results 

The contingency table was used in this study for obtaining descriptive and analytical 

statistics of the LULC classification accuracy assessment (Okeke, Boroffice and Akinyede, 

2008). In this case, they were used to summarize the information and also to obtain accuracy 

measures that can meet the present study goals (Smits, Dellepiane and Schowengerdt, 

1999). The accuracy assessment results from the LULC classification for 2000, 2010, and 2020 

are presented in table 3. The confusion matrix comprises the over-all accuracy, the user's 

and producer's accuracy, and various forms of kappa coefficients. The overall accuracy is 

the ratio of the sum of correctly classified pixels (i.e., the total amount of major diagonal 

entries) to the sum of pixels in the confusion matrix.  

 

Table 3. Error matrix for 2000, 2010, and 2020 LULC classification 

2000  

Class 

Value C_1 

   

C_2 

   

C_3   C_4   C_5   C_6 

 

Total U_Acc. 

 

Kappa 

C_1 26 0 0 0 0 0 26 1.000 0 

C_2 0 40 1 0 0 0 41 0.976 0 

C_3 0 3   59 4 0 0 66 0.894 0 

C_4 0 0 3 68 3 0 74 0.919 0 

C_5 0 0 0 2 88 2 92 0.957 0 

C_6 0 0 0 0 2  49 51 0.961 0 

Total 26 43 63 74  93 51    350 0 0 

P_Acc. 1 0.930 0.937 0.919 0.946 0.961 0 0.943 0 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.929 

2010  

Class 

Value C_1 

   

C_2 

   

C_3   C_4   C_5   C_6 

 

Total U_Acc. 

 

Kappa 

C_1 18 0 0 0 0 0 18 1.000 0 

C_2 0 31 7 0 0 0 38 0.816 0 

C_3 0 2  58 6 0 0 66 0.879 0 

C_4 0 0 1    73 7 0 81 0.901 0 

C_5 0 0 0 1    85 7 93 0.914 0 

C_6 0 0 0 0 0    55 55 1.000 0 

Total 18   33   66    80    92    62    351 0.000 0 

P_Acc. 1.000 0.939 0.879 0.913 0.924 0.887 0.000 0.912 0 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.890 
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2020  

Class 

Value C_1 

   

C_2 

   

C_3   C_4   C_5   C_6 

 

Total U_Acc. 

 

Kappa 

C_1 21 0 0 0 0 0 21 1.000 0 

C_2 0  39 4 0 0 0 43 0.907 0 

C_3 0 1 58 5 0 0 64 0.906 0 

C_4 0 0 1    72 2 0 75 0.960 0 

C_5 0 0 0 0 87 3 90 0.967 0 

C_6 0 0 0 0 1 57 58 0.983 0 

Total 21 40 63   77  90 60    351 0.000 0 

P_Acc. 1.000 0.975 0.921 0.935 0.967 0.950 0.000 0.952 0 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.940 

 

Also, the summary statistics of accuracy assessment result in table 3 is presented in 

the table 4. Results in the table show that the overall accuracy obtained from the LULC 

classification for 2000, 2010, and 2020 were 94%, 91%, and 95%. Of course, these levels of 

accuracy are highly acceptable as they are higher than 85% stipulated by Anderson et al. 

(1996) as the required accuracy minimum for research of this nature.   

       

Table 4. Summary of accuracy assessment result 

Parameters 2000 2010 2020 

Overall accuracy 

%) 

94 91 95 

Kappa 0.93 0.89 0.94 

  

Furthermore, the kappa coefficient (K) is the percentage of correctly classified pixels 

extracted from the actual percentage expected by chance. The kappa coefficient has a value 

that varies between –1 and 1 but usually falls between 0 and 1. The kappa coefficients in this 

study were 0.93, 0.89, and 0.94 for 2000, 2010, and 2020 respectively. Of course, these 

values indicate an almost perfect correlation.  

 

LULC Change detection results  

The post-classification approach is the only method that results in a change that 

usually provides 'from – to' information (Okeke, Boroffice and Akinyede, 2008). In this study, 

the LULC changes were calculated between 2000 and 2010; and between 2010 and 2020 for 

the six LULC classes (see table 5).  

 

Table 5. Change statistics over the study epochs 2000-2010 

2000-2010 

Class Change 

Annual Rate of 

Change 

% 

Change 

Forest 10443.800 0.073 7.868 
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Grassland 3506.800 0.014 1.371 

Cropland 20276.550 0.091 10.025 

Other 

land -375.950 -0.002 0.213 

Built–up -9159.950 -0.100 9.066 

Wetland -24691.200 -0.797 -44.342 

2000-2010 

Class Change 

Annual Rate of 

Change 

% 

Change 

Forest 8702.800 0.057 6.078 

Grassland -8151.750 -0.032 -3.144 

Cropland -19337.000 -0.095 -8.689 

Other 

land -4137.250 -0.024 -2.352 

Built–up 14323.500 0.135 15.590 

Wetland 8599.750 0.217 27.748 

 

The results in table 5 indicate that the highest increase in LULC between 2000 and 

2010 occurred in forest land at 10443.800 sqkm (7.87 %) with an annual rate of change at 

0.073. Also, the grassland increased between 2000 and 2010 at 3506.800 sqkm (1.37%) with 

an annual rate of change at 0.014. There was an increase in the cropland between 2000 and 

2010 at 20276.550 sqkm (10.03%) with an annual rate of change at 0.091. For other lands, 

there was a decrease between 2000 and 2010 at 375.950 sqkm (0.21%) with an annual rate of 

change at 0.002. Also, the built–up shows a decreasing trend from 2000 to 2010 at 

9159.950sqkm (9.07%) with an annual rate of change at 0.100. The wetland shows a 

decreasing trend from 2000 to 2010 at 24691.200 sqkm (44.34%) with an annual rate of 

change at 0.797. The decrease could be associated with land reclamation of the 

waterbodies, siltation and natural shrinkage in the volume of lakes and rivers. The effects 

are ecosystems and habitat loss, loss of livelihood, economic losses, in-creased poverty and 

settlement dislocation.  

Furthermore, the forest cover increased by 8702.800 (6.08%) from 2010 to 2020 with 

an annual rate of change at 0.057. The grassland decreased from 2010 to 2020 at 8151.750 

sqkm (3.14%) with an annual rate of change at 0.032. Of course, the decreases in grassland 

often result from agricultural activities and the increase is due to high gain from forest 

cover. The period between 2010 and 2020 recorded a decrease at 19337.000sqkm (8.69%) 

with an annual rate of change at 0.095. The other lands de-creased between 2010 and 2020 

at 4137.250 sqkm (2.35%) with an annual rate of change at 0.024. The built–up increased 

between 2010 and 2020 at 14323.500sqkm (15.59%) with an annual rate of change at0.135.  

The wetland increased between 2010 and 2020 at 8599.750sqkm (27.75%) with an annual 

rate of change at 0.217. The in-crease in the wetland is mostly a result of an increase in 

rainfall and human imprint that allowed the water to persist on the forest cover that   
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gradually turned part of the forest cover into the wetland. Also, the percentage change in 

the LULC classes are presented in figure 3. 

 

 
Figure 3. LULC map of Nigeria for the three epochs of study 

 

The forest cover experienced a percentage change of 7.868 and 6.078 from 2000-2010 

and 2010-2020 respectively. The implication is that despite the positive change or increase 

in the forest cover throughout the study epoch, the increase between 2010 and 2020 was 

slow compared to the earlier epoch. The grassland demonstrated a percentage increase of 

1.371 from 2000 to 2010, but a percentage decrease of 3.144 from 2010 to 2020. This implied 

percentage gain and loss respectively. Also, the cropland increased by 10.025 percent   

between 2000 and 2010, and decreased by 8.689 percent from 2010 to 2020 indicating   

percentage gain and loss respectively.  The other lands increased by 0.213 percent and 

decreased by 2.352 percent from 2000 to 2010 and from 2010 to 2020 respectively. Also, the 

built–up increased by 9.066 percent in period from 2000 to 2010 and further increased by 

15.590 percent from 2010 to 2020. Finally, the wetland decreased by 44.342 percent and 

increased by 27.748 percent between 2000 and 2010, and between 2010 and 2020 

respectively. 

 

Conclusion 

Using remote sensing data and GIS, we examined the scope, size, and character of 

LULC in Nigeria. We showcased three comprehensive wall-to-wall LULC maps and   

estimates of Nigeria at ten-year intervals, spanning 2000 to 2020. For the majority of land-

cover classes, per-class producer and user accuracy was above 90%. This demonstrated the 

reliability of the estimates. Of course, this levels of accuracy obtained in the classification 

are highly acceptable as they are higher than 85% stipulated as the   minimum ac-curacy 

required for research of this nature. Likewise, the kappa coefficients were 0.93, 0.89, and 
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0.94, for 2000, 2010, and 2020 correspondingly. This kappa coeffi-cients indicated an almost 

perfect correlation between the classified pixels and ground truth data. 

The findings in this study indicated that LULC experienced fluctuating change   during 

the period of study. There is significant variability regarding LULC in Nigeria.  Depending 

on the requirements of the end users, the results from this study can be used in conjunction 

with other maps to build and apply post-processing rules. In a similar vein, these results can 

be utilized to pinpoint areas in need of further ground truth data.  

This study proves the feasibility of mapping LULC time-series over extensive area 

using satellite data. To a significant extent, land dynamics may be understood using this 

paradigm for land change evaluation. The maps produced in this study offer a standardized 

data for evaluating land change at national, and local levels, as well as for use as inputs in 

other modeling projects and evaluations. Also, the study showed how current developments 

in GIS and its application for LULC analyses can be used to extract valuable earth surface 

information from long-term satellite data. Similarly, natural resources managers, policy 

makers, and other stakeholders will find the results of this study helpful for targeting and 

allocating resources and other land use interventions. However, future studies in this area 

should be focused on using various metrics inverifying that anthropogenic activities have 

intensified in tandem with the settlement growth this study has documented. It is also 

advised to test for statistical significance the main causes of the observed LULC change. 

Also, more research will relate this LULC change to time series population density data to 

confirm the observed human-induced LULC change. 
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