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Abstract: 

Plant growth-promoting rhizobacteria (PGPR), which are free-living soil 

microorganisms, live in the rhizosphere and the plant's roots. They can directly 

promote plant development by fixing nitrogen, solubilizing, and acquiring 

minerals (phosphorus, potassium, and other vital elements), regulating 

phytohormones, or indirectly by regulating plant pathogens through the 

synthesis of numerous secondary products, including antibiotics, siderophores, 

hydrolytic enzymes, and even promoting systemic resistance in plants. Numerous 

PGPR strains from various taxonomic families have favorable impacts on plants. 

Both the biofertilizer and the biocontrol activities of PGPRs substantially impact 

the wellness and yield of plants. These activities can be thought of as two aspects 

of the same coin. Using PGPR as a robust biofertilizer and/or biocontrol agent is a 

viable replacement for chemical fertilizers and pesticides that can help grow 

ecologically friendly and sustainable agriculture. The various strategies that 

rhizobacterial strains employ to encourage plant growth are described in this 

review. 

Keywords: Biofertilizers, Biocontrol, Plant growth promoting rhizobacteria 

(PGPR), Photostimulation, Phytopathogens, Sustainable agriculture, Systemic 

resistance. 

 

Abbreviations: PGPR- Plant growth-promoting rhizobacteria, BNF- Biological 

nitrogen fixation, PGP- Plant growth promotion, ISR- Induced systemic resistance 

 

Introduction 

The regrettable consequence of the rise in human population worldwide is 

that the current rate of food supply may soon no longer be adequate to satisfy the 

dietary requirements of everyone living today. Raising agricultural output is 

therefore crucial while minimizing harm to the ecosystem and environment. 
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Farmers are relying more and more on chemical pesticides and fertilizers to 

solve this issue and increase plant yields. To meet the rising need for food, 

efficient and biological agricultural practices are required because the 

indiscriminate usage of chemical pesticides and fertilizers harms the ecosystem 

and environment. In the context of an ecological agriculture system, the 

application of PGPR may be a good replacement for chemical fertilizers and 

pesticides to increase productivity while at the same time lowering pollution and 

safeguarding the environment. According to past studies, PGPR affects 

development, nutrient uptake, and production rate through various processes (1–
3). 

Soil is a home to diverse microorganisms including bacteria, fungi, and 

protozoa, among them bacteria are more frequently found the Rhizosphere, 

associated with plant growth. The rhizosphere, a microscopic soil layer 

surrounding plant roots, is vital for root activity and metabolism (2). This zone is 

nutrient-rich as compared to the bulk soil due to the release of various root 

exudates (Root exudates are substances that roots exude into the soil like amino 

acids, organic acids, sugars, polysaccharides, and vitamins), which support the 

growth of the rhizobacteria (4). Root exudates allow interaction between 

microorganisms and plants, helping plant growth promotion and inducing 

defenses against plant pathogens (5). Bacteria can efficiently colonize the 

rhizosphere and root region, thus influencing plant growth directly and 

indirectly, and are hence referred to as rhizobacteria that promote plant growth 

(PGPR) (6).  

Numerous bacterial strains from various taxonomic families that live in plant 

roots and their rhizosphere are included in PGPR. Several bacterial species have 

been reported to promote plant growth, including Rhizobium, Pseudomonas, 

Bacillus, Klebsiella, Azotobacter, Enterobacter, Alcaligenes, Arthrobacter, 

Azospirillum, Rhodococcus, Agrobacterium, Erwinia, Chromobacterium, 

Sinorhizobium, Flavobacterium, Burkholderia, Micrococcous (Table 2). They 

accelerate plant development through a variety of processes, such as BNF, the 

solubilization of nutrients and minerals in the soil, the production of numerous 

plant growth regulators, and the defence of plants against phytopathogens 

through the inhibition or control of these organisms (2,3). Along with these, PGPR 

helps alleviate biotic and abiotic stress, indirectly enhancing plant growth (5,7). 

Such multidimensional utility of PGPR makes them a promising tool as a 

biofertilizer and biocontrol to be exploited in agriculture to create agricultural 

systems that are sustainable and eco-friendly. 

Forms of PGPR 

PGPR are categorized into two types based on their location: symbiotic 

intracellular plant growth-promoting rhizobacteria (iPGPR) and free-living 

extracellular plant growth-promoting rhizobacteria (ePGPR). iPGPR live inside 
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root cells, often in specialized structures like nodules, enhancing nutrient 

mobilization. In contrast, ePGPR live in the rhizosphere, on the root surface, or in 

the intercellular spaces of the root cortex, colonizing plant tissue intercellularly 

(8). The different bacterial genera for both types are listed in Table 1. 

 

Mechanism of action 

PGPR enhances plant growth through various activities. They are be classified 

into two major types based on their mode of action:(a) biofertilizers ,which 

improve the plant nutrition and (b) biopesticides, which primarily combat 

diseases by the producing metabolites  as shown in fig.1. PGPR enhances plant 

growth by beneficially altering the entire microbial in the rhizosphere by 

producing a variety of chemicals/metabolites (5). They promote plant growth by 

a direct mechanism involving nitrogen fixation, solubilization of plant essential 

minerals and nutrients, phytohormone production, or by an indirect mechanism 

showing biocontrol activity by producing various metabolites, including volatile 

organic compounds (VOC), enzymes, antibiotics, and exopolysaccharides (3,9).  

A. Biofertilizer activity 

Nitrogen (N2) fixation     

Nitrogen (N) is the most crucial nutrient for plant growth and productivity. About 

78% of the N2 is freely available in the environment, but plant can utilize it. They 

absorb nitrogen in the forms of nitrate (NO3-) and ammonia (NH4+), with nitrate 

being the primary form in soil (10). Microorganisms, known as diazotrophs or 

nitrogen fixers, convert atmospheric N2 into a plants usable form through 

biological nitrogen fixation (BNF). Plants absorb nitrate via the nitrification 

process (11). When the plant uses nitrate (NO3
-), bicarbonate (HCO3

-) is released, 

which raises the pH of the rhizosphere and enhances the availability of other vital 

micronutrients for plants, including Zn, Ca, and Mg (12). 

Rhizobia are the most studied PGPR due to their N2 fixing capacity. Root-

associated rhizobia can penetrate root tissue utilizing the structure called an 

infection thread, leading to root nodule formation. It includes symbiotic bacteria 

like Rhizobium, Bradyrhizobium, Sinorhizzobium, and Mesorhizobium, While the 

free-living diazotrophic bacteria of the genera Azoarcus, Azotobacter, Klebsiella, 

Beijerinckia, Pantoea, Gluconacetobacter, Azospirillum, Enterobacter, 

Flavobacterium, Bacillus, and Azospirillum stimulate the growth of non-

leguminous plants through non-symbiotic interaction (13). Furthermore, 

Sibponkrung et al. reported the combined inoculation of Bacillus velezensis S141 

with Bradyrhizobium diazoeciens USDA110 significantly induced nodule 

formation in soybean (14). One of the most significant plant growth-promoting 

scenario is nitrogen fixation by symbiotic or free-living bacteria, which offers a 

low-cost, environmentally benign, and sustainable solution. 
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Phosphate solubilization 

Phosphorus (P), is the second-most significant nutrient for plant growth, essential 

for key metabolic functions, like photosynthesis, respiration, energy 

transmission, signal transduction, and macromolecular biosynthesis (15). 

Phosphorus (P), widely distributed in soils in both inorganic and organic forms, 

plants can only absorb P as negatively charged monobasic (H2PO4
-) and dibasic 

(HPO4
-2) ions (16). In agricultural, phosphate fertilizers are typically administered 

in huge quantities to boost phosphorus availability for plants, but 75% to 90% of 

this fertilizer often become in soil immobilized and precipitated by metal ions 

present in soil like Fe, Al, and Ca, thus making it unavailable to plant. The long-

term effects of this insoluble P, leads to serious environmental issues such as 

eutrophication, soil fertility loss, and carbon footprint (17). To address this, 

phosphate-solubilizing microorganisms (PSMs) play crucial role in converting 

insoluble phospahtes into the forms that plant can easily utilize it. PSM employ 

various mechanisms for P solubilization, including the release of organic and 

inorganic acids, H+ ion secretion, H2S generation, excretion of the enzyme 

(phytases and phosphatase), chelation, solubilization and phosphate 

mineralization fig (2). (17–19). Phosphate solubilization involves the production of 

organic acids by rhizobacteria to chelate metal ions or lower soil pH, enhancing P 

availability (20).  

 

Fig. 2- Rhizobacteria's solubilization of phosphorus is depicted 

schematically (adapted from Khan et al., 2009) 

Bacteria belong to genus Arthrobacter ureafaciens, Arthrobacter, Bacillus, 

Chryseobacterium, Delftia, Delftia sp., Gordonia, Phyllobacterium, Rhodococcus, 

Phyllobacterium myrsinacearum, Serratia, and Rhodococcus erythropolis has 

been reported for phosphate solubilization (21).  Also, some legume nodulating 

bacterial strains like Rhizobium tropici (CIAT 899T) and Rhizobium etli (UFLA 02-

100) can solubilize P (22). One study reported that bacterial strain of 

Enterobacter (EnHy 401) produces exopolysaccharides along with organic acids 

responsible for P solubilization (23).  Some phosphate solubilizing genes were 

isolated and characterized from various rhizobacterial species (24) by thus also 

suggest need for genome based study and further incorporation of it for 

sustainable agriculture.  

Potassium solubilization 

Potassium (K) is the third essential macronutrient for plant growth, crucial for 

processes like turgor pressure regulation, photosynthesis, stomatal activity, 

nutrient transport, and the synthesis of carbohydrates, proteins, and starch well 

as activating more than 60 enzymes (25). Despite its importance, the soil has 

small fraction of soluble potassium, with more than 90% of K is found in insoluble 

rocks and silicate minerals (26). There are four different forms of k present in soil 

– water soluble, exchangeable, non-exchangeable (solid), and mineral K; thus, 
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the available concentration of K for the plant is about 1-2% (27,28). Potassium-

solubilizing bacteria (KSB) in the rhizosphere can convert insoluble potassium 

into a form that plants can absorb as potassium ions (K+) from soil. Potassium-

solubilizing bacteria (KSB) can solubilize potassium, and the rhizosphere is the 

home to large populations of these bacteria (29). The bacteria that solubilize or 

mobilize potassium do so by synthesizing organic and inorganic acids, acidolysis, 

chelation, exchange reactions, and polysaccharide formation (30). Bacillus spp. 

can mobilize potassium from minerals compounds (silicate, feldspar, and illite) 

and set it aside for the plant utilization (31). Plant Growth Promoting Rhizobacteria 

such as Acidothiobacillus ferrooxidans, Arthrobacter sp., Bacillus mucilaginosus, 

Bacillus circulanscan, Burkholderia, Bacillus edaphicus, Enterobacter 

hormaechei, Paenibacillus mucilaginosus, Paenibacillus glucanolyticus, 

Cladosporium, Pseudomonas, Aminobacter, and Sphingomonas,  have been 

reported to solubilize potassium (32). By using potassium-solubilizing PGPR strain 

as biofertilizer, and agriculture can be improved by using fewer agrochemicals 

and promoting the growth of environmentally friendly crops. Despite the crucial 

role of potassium in plant growth, limited studies have been conducted on 

potassium solubilization by microorganisms. This area requires further 

investigation to better understand and harness the potential of KSB in enhancing 

potassium availability to plants. 

 

Siderophore-mediated iron acquisition 

Iron (Fe) is a vital micronutrient in plants, playing key roles in 

photosynthesis, mitochondrial respiration, the synthesis of nucleotides, 

chlorophyll, and thylakoid, chloroplast development, metal homeostasis, and a 

component of prosthetic groups of several proteins, (33,34). Iron ion (Fe) can 

exist in two forms the ferric (Fe3+) and the ferrous (Fe2+). Insoluble Fe3+ is the 

most prevalent element in soil, while Fe2+ is more soluble, they are readily 

oxidized into Fe3+ (35) and, therefore, not available to plants. Excess 

concentration of iron is also toxic; thus plants have evolved mechanisms to tightly 

regulate iron uptake, transport, and storage (36). Two distinct mechanisms for 

acquiring iron from the soil have evolved in plants i.e reduction and chelation 

based. Non-graminaceous plants typically employ the reduction-based method, 

where plant roots release protons and phenolic molecules, leading to 

rhizosphere acidification and promoting Fe3+ solubility. Only graminaceous 

plants adopt the chelation-based method these plants release iron-chelating 

phytosiderophores into the rhizosphere. These phytosiderophore has high 

affinity and specificity towards ferric ions (Fe3+) and thus form a complexes with 

Fe³⁺ ions.  

Siderophores are low molecular weight (10 kDa) iron-chelating substances 

secreted by rhizobacteria to aid plant growth in iron-deficient environments. 

They are responsible for the dissolution, chelation, and transport of ferric ions 

(Fe3+) (37). Because iron exists in various forms with varying solubilities in natural 
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systems, the availability of iron depends on siderophores' ability to chelate the 

metal from its complexes (38). Based on their structural features and functional 

groups, siderophores are classified into four type’s viz. carboxylate, 

hydroxamates, catecholate, and mixed siderophore. The structure and functions 

of each type of siderophore are excellently reviewed (39). Numerous studies 

have been reported for plant growth promotion via siderophore-mediated Fe-

uptake. For example - Cytochrome b5 reductase 1 (CBR1) plays an important role 

in rhizosphere acidification and thus enhances Fe uptake in Arabidopsis thaliana 

(40). Crowley et al. identified the siderophore-mediated iron 

acquisition/transport system in oat plants (41). PGPR drives a vital role in iron 

absorption in rhizospheric soil and facilitates plant growth thanks to its ability to 

create a siderophore. 

 

Phyto-stimulation 

Plant hormones or Phytohormones are naturally occurring group of organic 

compounds that promote plant growth and development (79). A plant's life cycle, 

including germination, rooting, growth, blooming, fruit ripening, foliage, and 

death, are regulated by physiological intercellular mediators (80). Even at low 

concentration, they can promote, inhibit or modify the plant's development and 

growth. Abiotic stressors like salt, drought and heavy metal stress are all known 

to be reduced by these phytohormones, which are also recognized for 

encouraging plant development (56,72).  Auxin, gibberellins (GA), cytokinins 

(CK), abscisic acid (ABA), ethylene, etc., are the known classical phytohormones 

(81). Researchers have investigated additional plant growth regulators, including 

salicylic acid, brassinosteroid, jasmonic acid, and strigolactone (79,82). These 

plant growth regulators are produced by plants and by some soil microbes. It is 

believed that, this is one of the effective methods by which many rhizobacteria 

enhance plant growth is the production of phytohormones. 

 

Auxin 

Auxin is a critical phytohormone that is essential for the growth and 

development of plants. It is intricated in the following functions: cell division, cell 

elongation, branching, phototropism gravitropism, meristem formation, fruit 

development, controlling of senescence (senescence is the degradation of plant 

organs), inhibits or delays abscission of leaves and flowers, and fruits, apical 

dominance (the inhibition of lateral buds formation), and augment the production 

of adventitious roots (80,83,84). Auxins may be natural or synthetic. Naturally 

occurring auxins are indole3-acetic acid (IAA) and its derivatives, while Synthetic 

auxins are 2, 4-dichlorophenoxyacetic acid (2, 4- D) and naphthalene acetic acid 

(NAA) (85). Indole-3- acetic acid (IAA) is the most prevalent and natural auxin, 

and microorganisms only differ in their synthesis process based on the plant and 

microbes. Sapenean et al. (86) and George et al. (85) reported the different 

pathways involved in IAA synthesis by bacteria (see fig.3). Many rhizobacteria, as 
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well as some pathogenic, symbiotic, and free-living bacterial species, possess 

the capacity to synthesize IAA (86,87). Bacteria belonging to Pseudomonas, 

Azatobacter, Azospirillum, Bacillus, Enterobacter, Agrobacterium, Pantoea, 

Rhizobium, Bradyrhizobium, Klebsiella, Alcaligenes, Achromobacter, 

Flavobacterium, Arthrobacter, Rhodococcus, Sphingomonas, Stenotrophomonas, 

Microbacterium, rcinetobacter, Corynebacterium, Micrococcus, and 

Streptomyces genera have been reported for IAA production (83,87). Auxin is 

often interchanged with IAA throughout the literature. The synergetic effect of 

auxin with jasmonic acid (JA) and salicylic acid (SA) on the growth and defence 

system of the plant is well explained by Naseem et al. (2015) (88), where 

exogenous auxin activates jasmonic acid-dependent-plant resistance and 

suppresses salicylic acid-dependent resistance and promote plant growth. 

Concentration of auxin produced by the strain determines the auxin's stimulatory 

effect on the host plant (89). Understanding and harnessing the effects of auxin, 

particularly its interactions with other phytohormones, could offer valuable 

insights for optimizing plant growth and defense mechanisms. Future research 

should focus on fine-tuning auxin levels in agricultural practices to enhance crop 

yield and resilience against environmental stressors. 

 

Fig.3-Different pathways involved in the bacterial synthesis of IAA. [IAAld -

indole-3-acetaldehyde; IAM -indole-3-acetamide; IPDC - indole-3-pyruvate 

decarboxylase; Trp – tryptophan] (Adopted from Spaepen et al., 2007). 

 

Gibberellin 

Gibberellin is a vital phytohormone that stimulates plant growth and 

development. Chemically gibberellins are gibberellic acids (GA) (90). More than 

136 gibberlines molecules have been discovered until now and are represented 

as GA1-GA136. But only a few are bioactive and found in bacteria. Gibberellic 

acids such as GA3, GA7, GA1, and GA4 are this group's biologically active and 

best-studied phytohormones (61). Tetracyclic diterpenes, which make up GA, 

significantly impact various plant developmental processes, including stem 

lengthening, seed germination, bolting, leaf expansion, sex differentiation, fruit 

development, blooming, and senescence postponement (71). GA regulates the 

amount of root hair, which contributes to its role in promoting root growth, it also 

have been reported to synthesize amylase hydrolytic enzyme during seed 

germination; thereby, it is involved in breaking seed dormancy (80,82,90). In 

addition to this GA is also implicated in the regulation of responses of plant to 

various environmental conditions like salinity, drought, temperature, flooding 

and heavy metal stress (91–93).  Thus, it is an important plant growth regulator 

that alleviates many plants' biotic and abiotic stress. At low salinity, tomato plants 

treated with GA reduced stomatal resistance and increased water usage 

effectiveness (94). When plants are subjected to biotic and abiotic stress, GA 

accumulates quickly (92). Plant growth enhancement benefits greatly by bacterial 
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derived GA. Phytohormones like auxin, GA, and CK play a major role in fruit set 

(first step of fruit development), and their increased level during fruit 

development lead to the production of parthenocarpic or seedless fruit formation 

in tomato (95). These suggest that GA also has some role in fruit setting and 

flowering. GA synthesis has been observed in the following genera 

Achromobacter, Gluconobacter, Acinetobacter, Rhizobia, Azotobacter, Bacillus, 

Herbaspirillum, Azospirillum, Pseudomonas, Flavobacterium, Micrococcus, 

Agrobacterium, Leifsonia, Clostridium, Rhizobium, and Xanthomonas (70,87).  

Cytokinin (CKs) 

CK is yet another key plant growth regulator. CKs are purine derivatives 

and plant hormones which play crucial roles in cell division, seed germination, 

root development, bud release, fruit development, chlorophyll buildup, leaf 

expansion, and the delay of senescence (80). CK is produced by a variety of 

rhizobacteria, including those of the genera Rhizobium, Azotobacter, 

Azospirillum, Arthrobacter, Bacillus, Rhodococcus, Agrobacterium, 

Pseudomonas, and Paenibacillus (87). Rhizobium japonicum (96) and 

Bradyrhizobium japonicum (97) generated CK, which nodulated soybean roots 

and stimulated cell proliferation in the soybean. In addition, cytokinins help 

plants to deal with various biotic and abiotic stresses, including salinity and 

drought (98). CKs produce by PGPR is a useful biocontrol tool for combating a 

wide range of phytopathogens. The biostimulation and biocontrol activity of CK-

producing rhizobacteria is comprehensively reviewed by Akhtar et al. (2020) 

(99). Inoculation of lettuce plants with Bacillus subtilis raised the CK content of 

both shoots and roots. Also, it changed the concentration of abscisic acid (ABA) 

and indolyl-3-acetic acid (IAA) in the lettuce plants (60). Soybean and corn seed 

germination and early seedling growth can be stimulated by the inoculation of 

either Azospirillum brasilense strain Az39 or Brayrhizobium japonicum strain 

E109. These microorganisms can produce the plant growth regulators IAA, zeatin 

(Z), and gibberellic acid (GA3) (65) Therefore, PGPR strains that produce CK and 

other plant hormones may represent a more sustainable and environmentally 

friendly alternative to chemical fertilizers. 

 

ABA 

ABA, a naturally occurring plant growth regulator similar to other 

phytohormones, is crucial for abscission processes (the separation of plant 

components, mainly dead leaves and mature fruit) and dormancy. Because of its 

role in stomatal closure, the transpiration rate (100) gets reduced, and the 

pathogen entrance gets blocked (101). The importance of ABA in the 

development of nodules was established by Suzuki et al. (2004) (102). ABA can be 

synthesized by a number of PGPR strains, including Azospirillum brasilense, 

Bacillus licheniformis, Bacillus pumilus, Brevibacterium halotolerans, 

Lysinibacillus fusiformis, Bacillus licheniformis, Bacillus pumilus, and 
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Rhodococcus sp (103). Increased endogenous ABA content makes plants more 

resistant to drought stress after inoculation with Azospirillum brasilense sp 245 or 

Azospirillum lipoferum USA 59b in the case of Arabidopsis thaliana or maize, 

respectively (46,104). Thus, ABA is also referred as a stress hormone because it 

shields plants from the damaging effects of environmental stresses such as 

drought, salinity, cold, and flooding (105). ABA-producing bacteria, such as 

Azospirillum brasilense and Bacillus subtilis, were found to lessen cadmium (Cd) 

contamination in Brassica chinensis in an investigation by Pan et al. (2019) (47). 

Under a range of situations, ABA has a beneficial effect on stomatal activity, seed 

dormancy, and other aspects of plant growth. The PGPR varieties favor either an 

ABA-dependent or -independent strategy to promote plant development. 

Ethylene 

A unique class of plant hormone called ethylene is essential for several 

physiological processes in plants, such as development, fruit ripening, 

senescence, and abscission (106,107), and protect against biotic and abiotic 

stress. Ethylene, a gaseous plant hormone, can stimulate or inhibit plant 

development, depending on its concentration. As ethylene is useful at low 

concentrations but hazardous at high concentrations for plant health, thus it is 

necessary to maintain moderate conc. of ethylene levels in plants (108). This can 

be attained by inference of PGPRs with 1-aminocyclopropane-1-carboxylate 

(ACC) deaminase activity. The ACC deaminase enzyme regulates the high levels 

of ethylene in plants, and PGPR plays a role in this process. Plants use this 

enzyme to convert ACC (an immediate precursor of ethylene production in 

plants) into α-ketobutyrate and ammonia, neutralizing the harmful effects of 

ethylene accumulation on the growth and development of the plant (109). PGPRs 

with ACC deaminase activity promote plant growth by reducing the negative 

effects of environmental stresses such as salt, drought, temperature, and flooding 

(109). Aneurinibacillus aneurinilyticus and Paenibacillus strains expressing ACC 

deaminase ameliorated the harmful effects of salt stress on French bean 

seedlings. Compared to control plants, groundnuts infected with Pseudomonas 

fluorescens strain TDK1 exhibiting ACC deaminase activity had greater salinity 

resistance and higher yield (76).  

Understanding the mechanisms of PGPR-dependent plant growth stimulation 

and enhanced resilience to biotic and abiotic challenges relies heavily on PGPR 

strains' ability to produce various phytohormones or to affect plant homeostasis. 

 

B. Biocontrol activity 

There are a number of issues in the agricultural system that can restrict plant 

growth. The pathogenic microorganisms are major reason for decreased 

agricultural production. The application of microorganisms instead chemical 

pesticides, insecticides, and herbicides to treat plant diseases is a more eco- 

friendly approach and a safe and viable alternative. Rhizobacterial ability to 
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suppress diseases depends on how susceptible the phyto-pathogen is to the 

rhizobacterium antimicrobial compounds. Antibiotics, siderophores, hydrogen 

cyanide, volatile organic compounds (VOC), extracellular enzymes, 

polysaccharides, and competition for nutrients with pathogenic bacteria in the 

rhizosphere are all ways in which this biocontrol activity manifests itself (2,110). 

Furthermore, it stimulates plant responses that induce systemic resistance 

(ISR) and systemic acquired resistance (SAR). Table 3 shows several important 

PGPR strains used in disease control. Following is a quick explanation of how the 

various metabolites produced by PGPR contribute to the biocontrol activity by 

inhibiting the growth of harmful bacteria. 

Antibiotic 

Beneficial rhizobacteria can secrete antibiotics and other chemicals that 

suppress plant pathogen and diseases. One common biocontrol strategy PGPR 

uses is antibiosis, which is the production of antibiotics. Antibiotics are a class of 

chemical compounds has a broad spectrum activity against various 

microorganism (111). A large number of studies have sought to prove that 

antibiotics, by either increasing their synthesis or interrupting the genes involved 

in the synthesis, may be used to inhibit the growth of pathogenic fungi and 

bacteria. An example is the inability of an antibiotic of fluorescent pseudomonad 

spp. without the antibiotic production gene suppress phytopathogens growth, in 

comparison to the wild-type strain, demonstrates that the antibiotics play crucial 

role in biocontrol. Some of the antibiotics that PGPRs generate include 

pyoluteorin, phenazine-1-carboxamide (PCN), pyrrolnitrin, 2,4-

diacetylphloroglucinol (DAPG), rhamnolipids, phenazine-1-carboxylic acid 

(PCA), fengycin, surfactin, polymyxins, fusaricidin, iturin, circulin, colistin, 

viscosinamide, kanosamine, and zwittermycin (110,112). These antibiotics fight 

against diverse bacteria, fungi, and viruses thus indirectly stimulate plant growth 

and development. Numerous species of Pseudomonas and Bacillus produce 

antimicrobial compounds with broad-spectrum activity against many 

phytopathogens, making them promising candidates for use as biocontrol agents 

in agriculture. Since PGPRs can produce more than one antibiotic, they could be a 

powerful biocontrol agent. 

 

Siderophore-mediated biocontrol activity 

Iron is a micronutrient that nearly every living thing requires. In soil, iron 

can be found in both ferric (Fe3+) and ferrous (Fe2+) ions, but neither is available 

to bacteria or plants (2). Siderophore, a low-molecular-weight iron chelator 

molecule secreted by bacteria, has a high affinity for ferric ion (Fe3+), binding 

strongly with iron and rendering it unavailable to pathogens, hence inhibiting 

their proliferation in the rhizosphere (113). These siderophores' probable mode 

of action involves competition for iron between the PGPR and phytopathogens 



Scopus Indexed Journal                                                                            September 2024 

 

 

 

635 

(114). Providing iron to plants or displaying antagonism against harmful microbes 

are two ways in which siderophores mediate plant growth. Biocontrol activity of 

Pseudomonas fluorescens strains A1, BK1, and TL3B1 against the pathogen 

Erwinia carotovora was initially described by Kloepper et al. (1980) (114). 

Siderophores produced by various rhizobacterium exhibit broad-spectrum 

antagonistic activity against various phytopathogens, including Pseudomonas 

tolaasii (77), Fusarium oxysporum f. sp. dianthi (Fod) (76), Phytophthora sp., 

Aspergillus niger, A. flavus, A. tubingensis, Alternaria alternata (115), 

Colletotrichum gloeosporioides (116), Fusarium oxysporum f. sp. lycopersici (78) 

, Alternaria sp., Aspergillus brasiliensis, Rhizoctonia sp., Colletotrichum sp., and 

Curvularia sp. (80). Thus, PGPR promoting plant growth through siderophore 

production could be a sustainable approach to crop health management. 

 

Volatile organic compounds (VOCs) 

The ability to produce volatile organic molecules is crucial to plant 

development. Aldehydes, ketones, aromatics, sulfides, and alcohol are all volatile 

chemicals that are produced by various bacteria (111). Rhizobacterial VOCs have 

been known to have antibacterial, antifungal, and nematicidal activity and to 

promote plant growth. However, a VOC's high concentration may have the 

opposite effect. VOC also aids in plant growth stimulation by regulating the 

synthesis or metabolism of plant hormones (117) (118). Root architecture, lateral 

and primary root length, and lateral root number on A. thaliana were all altered 

due to the presence of VOCs generated by Bacillus sp. (110). Paenibacillus 

polymyxa KM2501-1 produced volatile chemicals with nematicidal activity 

against Meloidogyne incognita. A special "honey-trap" mechanism of action is 

observed as synthesized compounds such as furfural acetone and 2-decanol that 

can lure M. incognita and subsequently kill it by touch or fumigation (120)(120). 

Two volatile chemicals, 3-hydroxy-2-butanone (acetoin) and 2, 3-butanediol, are 

released by Bacillus subtilis GB03 and Bacillus amyloliquefaciens IN937, and they 

stimulate plant development and elicit ISR in Arabidopsis (121). The tomato wilt 

pathogen Ralstonia solanacearum is effectively suppressed by volatiles produced 

by Bacillus amyloliquefaciens SQR-9. These volatiles include heptadecane, 2-

tridecanone, 2-nonanone, nonanal, n-hexanoic acid, 2-decanone, 2-undecanone, 

among others (122). Rhizobacterial strains of Bacillus sp., Paenibacillus sp., and 

Xanthomonas sp. were shown to be effective in preventing rice root-knot 

nematode Meloidogyne graminicola infestation through the formation of VOCs in 

a recent study (123). Fungi, including Botrytis cinerea, Phytophthora cactorum, 

Rosellinia necatrix, and Fusarium equiseti, were successfully inhibited by 

Pseudomonas spp. and Bacillus spp., which produce VOCs (124). VOCs 

generating PGPR strains are increasingly being recognized as efficient biocontrol 

agents against a wide range of fungal diseases and nematodes because of their 

low environmental impact and ability to provide lasting crop protection.  
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Production of extracellular enzymes 

The release of cell wall-disintegrating enzymes is a crucial mechanism used 

by biocontrol agents. Hydrolytic enzymes are so named because of their ability 

to break down polymeric molecules found in a cell wall (125). Hydrolytic 

enzymes such as protease, chitinase, cellulase, glucanase, etc., produced by 

PGPR strains, thus allowing them to destroy the cell wall of various 

phytopathogenic fungi (64). The following are some of the many instances used to 

investigate these consequences better: the cellulolytic and chitinolytic enzymes 

produced by Paenibacillus sp. compromise the structural integrity of the cell 

walls of P. parasitica and F. oxysporum, respectively (126). The enzyme chitinase 

suppresses many fungal diseases, which hydrolyzes the glycosidic connections 

between chitin, a significant component of the fungal cell wall. Bacillus spp. BPR6 

and BPR7, which produce the chitinase, suppress the growth of a number of 

different phytopathogens, including Macrophomina phaseolina, Fusarium 

oxysporum, F. solani, Sclerotinia sclerotiorum, Rhizoctonia solani, and 

Colletotricum sp. (127). In addition, Bacillus subtilis (strain 330-2) produces a 

complex of hydrolytic enzymes, including β-1,3-glucanases, β-1,4-glucanase, and 

proteases, that are involved in the degradation of the fungal cell wall, resulting in 

the strain's strongest antagonistic activity against many Rhizoctonia solani, 

Botrytis cinerea, Fusarium oxysporum, Alternaria alternata, Cochliobolus 

heterostrophus, and Nigrospora oryzae (128). The strains of PGPR that produce 

hydrolytic enzymes are the safest, most sustainable, and environmentally benign 

method of pest control since they demonstrate antagonistic activity against a wide 

range of phytopathogens without harming plant tissues. 

Induced systemic resistance (ISR) 

Rhizobacteria are capable of inducing an important defense mechanism 

known as Induced systemic resistance (ISR). The term ISR describes the way in 

which a plant's defense mechanism is bolstered against infections by a 

combination of bacterial metabolites. Plants can develop resistance to some 

harmful microbes like fungi, bacteria, and viruses, when such microbes interact 

with the plant's root, as described by Lugtenberg and Kamilova (2009) (1). PGPR 

controlling pathogens and thus indirectly promoting plant growth, also stimulates 

plant responses, including ISR and SAR (4). 

Both ISR and SAR share similar phenotypes, where pathogens and insects trigger 

SAR, and beneficial rhizobacteria trigger ISR (5,129). The elicitor and regulatory 

pathways involved in the induction of systemic resistance in plants are the 

primary determinants of whether a plant exhibits SAR or ISR. A plant's SAR 

depends on salicylic acid pathways, while ISR relies on jasmonic acid and 

ethylene (130). Salicylic acid has been shown to have a key role in the generation 

of systemic resistance against blue mold disease of tobacco triggered by PGPR, 

as shown by Zhang et al., 2002 (131). Systemic resistance against late blight, 

produced by Phytophthora infestans on tomatoes, has been elicited using PGPRs, 
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Bacillus pumilus SE34, and Pseudomonas fluorescens 89B61, and the severity of 

the disease has been reduced (132). Efficient elicitors of ISR include volatile 

chemicals, siderophores, antibiotics, and enzymes. ISR has been linked to the 

production of antioxidant enzymes such as phenylalanine ammonia-lyase (PAL), 

peroxidase (PO), and polyphenol oxidase (PPO) in plants (133,134). Enhanced 

activity of PO, PPO, and PAL enzymes was seen in cucumbers where ISR against 

Pythium aphanidermatum was mediated by PGPR (135).  

 

Conclusion 

Recently, there has been a rise in the application of beneficial bacteria in 

agriculture. It is crucial to generate multifunctional inoculants for agriculture to 

isolate and identify these bacteria and assess their plant growth-promoting (PGP) 

activities. While most PGPR research has focused on a single mechanism, 

understanding the many factors contributing to PGPR's success could one day aid 

in its commercial manufacturing. There are currently many investigations into the 

solubilization of nitrogen and phosphate. Still, there is a need to investigate the 

solubilization of potassium, as it is the third key required macro-nutrient for plant 

growth. In conclusion, PGPRs are capable of reducing the use of chemical 

fertilizers, pesticides, and artificial plant growth regulators that have a harmful 

effect on the ecosystem, and they are also responsible for increasing productivity 

and soil fertility, the two most crucial factors in preserving an eco-friendly and 

sustainable agricultural system. 
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Fig. 3 

Table 1: 

PGPR Bacterial genera Referneces 

ePGPR  Bacillus, Azotobacter, Arthrobacter, 

Burkholderia,  

Caulobacter, Erwinia, Chromobacterium, 

Enterobacter, Flavobacterium, Micrococcous, 

klebsiella, Azospirillum, 

Pseudomonas and Serratia 
 

(8) 

  

iPGPR  Rhizobium, Bradyrhizobium, Sinorhizobium,  

Mesorhizobium and frankia  

Table 1: Classification of different bacterial genera on the basis of their location 

 

Table 2: 

PGPR STRAIN PLANT  MODE OF 

ACTION  

 EFFECT ON PLANT REFEREE

NCES 

Achromobacter 

xylosoxidans 

Potato P 

solubilizatio

n,  

IAA 

production 

A considerable elevation in 

chlorophyll a and b is also 

indicated by a rise in shoot 

and root length, shoot fresh 

and dry weight, root fresh and 

dry weight, and N and K 

concentration. 

(42) 

Acinetobacter 

calcoaceticus 

SE370 

Cucum

ber, 

Chines

e 

cabbag

GA, 

Phosphate 

solubilizatio

n 

 

Improved the plant's height, 

dry weight, and shoot length 

considerably. 

(43) 
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e, and 

crown 

daisy 

Aneurinibacillus 

aneurinilyticus 

French 

bean 

ACC 

deaminase 

activity 

Alleviated salt stress and 

increased root length (110%), 

fresh root weight ( 45%), 

shoot length (60%), shoot 

fresh weight (255%), root 

biomass (220%), shoot 

biomass (425%), and total 

chlorophyll content ( 57%) 

(44) 

Azospirillum  

spp.(Az 19) 

Maize Nitrogen 

fixation, 

siderophore

, 

Reduced effects of drought 

and salt tolerance. 

(45) 

Azospirillum 

brasilense Sp 245 

Arabid

opsis 

thaliana 

Abscisic 

acid (ABA) , 

IAA 

production 

Modifications to the root 

architecture, reductions in 

stomatal conductance, 

enhancements to proline, and 

increases in relative leaf water 

level. Elevation in auxin level, 

increasing the amount of 

lateral roots and root hairs 

(46) 125 

Azospirillum 

brasilense, 

Bacillus subtilis 

Pakchoi 

(Brassic

a 

chinens

is) 

Abscisic 

acid (ABA)  

Lowered cadmium Cd stress 

and gives higher biomass and 

chlorophyll content, Improves 

the level of antioxidant 

compounds,   

(47) 

Azotobacter 

chroococcum 

a. 

Maize 

b. 

Corian

der, c. 

Olive 

tree 

Biocontrol 

Nitrogen 

fixation, 

Potassium 

solubilizatio

n, 

a. Highest biomass, seedling 

height, and nutrient uptake b. 

antagonistic activity against P. 

macrosporus and greatly 

lowered the degree of stem 

galling. c. Increases fruit 

weight and yield and 

alleviates stress under 

calcareous soil 

128)(48) 

(49) 

Azotobacter sp. 

(SR-4) 

Bottle 

gourd 

(Lauki), 

Nitrogen 

fixation 

Plant height, leaf 

length/width, fruit size, and 

number of fruits per plant 

when 

(50) 

Bacilllus mung P Stimulate the growth of lateral (51) 
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thuringiensis bean solubilizatio

n, IAA 

production 

roots and root hairs to 

increase the lengthening of 

the shoot and the root. 

Bacillus 

amyloliquefacien

s 

Arabid

opsis,  

VOCs Increase Fe and Se uptake in 

plants, regulate the nutrient 

acquisition 

(52) 

Bacillus 

amyloliquefacien

s 

Banana ND Plant height, leaf number, leaf 

area, pseudostem thickness, 

root  and shoot fresh weight, 

root and shoot dry weight 

(53) 

Bacillus 

amyloliquefacien

s SQR9 

Cucum

ber 

IAA 

production, 

voc, and 

phytase  

Increases cucumber yield 

(90.0%), shoot height (71.6%), 

root length ( 56.3%) and root 

surface area(65.6 %) 

(54) 

Bacillus 

licheniformis 

Am2, Bacillus 

subtilis BC1, 

Pseudomonas 

aeruginosa E2 

Cucum

ber 

cytokinin 

production 

Increased cell division as well 

as increases in the fresh 

weight and size of cucumber 

cotyledons 

(55) 

a. Bacillus 

licheniformis 

strain A2 

b. Bacillus 

mucilaginosus 

MCRCp1 

Ground

nut 

Phosphate 

solubilizatio

n, IAA 

production 

N2 fixation,   

a. Elevation in fresh biomass 

(28%), total length (24%), and 

root length (17%). b. 

Increased groundnut plant dry 

matter (125%), root length, 

and oil content (35.41%) 

(56), (57) 

Bacillus 

megaterium var. 

phosphaticum 

Pepper, 

Cucum

ber 

P 

solubilizatio

n 

Raised shoot and dry root 

weight  

(58) 

Bacillus 

megaterium, 

Azospirillum 

brasilense and 

Pseudomonas 

fluorescens 

Cauliflo

wer 

Nitrogen 

fixation, P 

solubilizatio

n  

Observed higher leaf length, 

leaf width, stem height, and 

plant weight, thereby 

increasing production 

(59) 

Bacillus 

megatherium 

Olive 

tree 

Nitrogen-

fixing, P and 

K 

solubilizatio

n, 

phytohormo

nes 

Improves yield, fruit weight, 

and flesh oil content of the 

olive tree 

(49) 
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production  

Bacillus 

mucilaginosus, 

Azotobacter 

chroococcum, 

Maize, 

Wheat 

Potassium 

solubilizatio

n 

A greater amount of biomass 

and potassium possessed by 

plants, in addition to an 

increased amount of 

chlorophyll and crude protein 

included in plant tissue. 

(32) 

Bacillus spp. Maize phosphate 

solubilizatio

n, 

phytohormo

ne 

production, 

HCN, 

hydrolytic 

enzymes  

Increases plant biomass, 

relative water content, leaf 

water potential, root adhering 

soil/root tissue ratio, 

aggregate stability, and 

alleviates salt stress 

 

Bacillus subtilis Lettuce Phytohormo

nes 

production- 

IAA, GA, 

ABA, CKs 

Increases shoot and root 

weight of the plant  

(60) 

Bacillus subtilis  Soybea

n 

Antibiotic, 

IAA, ABA 

Elevated the outgrowth of 

lateral roots and root hairs 

effective against soybean 

seed fungi 

(61) 

Bacillus subtilis 

IB-22 

Wheat Cytokinin 

production 

Increased leaf length, width, 

and chlorophyll content. 

(62) 

Bacillus 

velezensis LDO2 

Peanut Antibiotic Substantial increases in 

peanut seedling height, root 

length, and root dry weight, 

as well as the dry seedling 

weight of peanut seedlings. 

(63) 

Bacillus. subtilis 

RMB5, 

Pseudomonas 

aeruginosa FB2 

Arugula Antibiotic 

production, 

Hydrilytic 

enzymes 

enzymes, 

IAA 

production, 

nitrogen 

fixation, P 

solubilizatio

Increases plant height and 

biomass 

(64) 
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n 

Bradyrhizobium 

diazoe ciens 

USDA110 

+Bacillus 

velezensis S141 

Soyabe

an 

Nitrogen 

fixation 

Significantly increases 

nitrogen use efficacy, nodule 

number, dry nodule weight, 

size of nodules, and total plant 

dry weight 

(14) 

Brayrhizobium 

japonicum E109, 

Azospirillum 

brasilense strain 

Az39 

Corn, 

Soyabe

an 

IAA, GA3, 

Cytokinin 

Enhance the germination of 

seeds, the establishment of 

nodules, and the early growth 

of maize and soybean 

seedlings. 

(65) 

Burkholderia  sp. 

GZ18 

M. 

micrant

ha 

Potassium 

solubilizatio

n, 

Boosts the potassium level and 

plant mass of M. micrantha 

(66) 

Bacillus 

aryabhattai RS341 

Brevibacterium 

epidermidis RS15, 

Micrococcus 

yunnanensis RS222 

 red 

pepper 

seedlin

gs  

ACC 

deaminase 

When red pepper exposed to 

NaCl, PGPR stains shows 

increases in both their fresh 

and dry weights (150 mmol) 

(67) 

Chryseobacteriu

m spp. C138 

Tomato Siderophore 

production 

Enhances  Fe uptake in Fe-

starved tomato plant condition 

(68) 

Klebsiella sp.IG 3 Oat Phosphate 

solubilizatio

n, Potassium 

solubilizatio

n, ACC 

deaminase 

Increases the chlorophyll, 

proline, total sugar, and total 

protein content of oat 

seedlings under saline stress. 

(69) 

KSB1 (KJ410663) Maize Potassium 

solubilizatio

n 

Enhanced plant height, 

number of leaves, stem girth 

and chlorophyll content, and k 

supply to crop 

(29) 

Leifsonia soli sp. 

SE134 

Cucum

ber, 

tomato, 

and 

radish 

GA 

production 

Increased the biomass, 

hypocotyl, and root lengths of  

all plant 

(70) 

Leifsonia xyli 

SE134 

Tomato IAA and GA 

production 

Improved phosphorus and 

iron levels in plants raised 

under significant copper 

stress help lessen copper's 

negative effects on plants. 

(71) 
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Mesorhizobium 

ciceri IC53 

Chickp

ea 

(Cicer 

arietinu

m L.) 

Phytohormo

nes 

Enhanced nodule formation 

and stimulation of root and 

shoot biomass 

(72) 

Paenibacillus 

polymyxa strain 

E681, 

Pepper, 

Cucum

ber, 

Sesame 

Antibiotic 

production 

Protect the plant from various 

biotic and abiotic stress 

(73) 

Pseudomonas 

aeroginosa 

Elaeis 

guinee

nsis (oil 

palm) 

Hydrolytic 

enzymes, 

phosphate 

solubilizatio

n, IAA 

production 

Exhibits antagonistic activity 

against fungal pathogens 

(74) 

Pseudomonas 

aeruginosa 

strains RSP5 and 

RSP8 

Maize siderophore 

mediated Fe 

uptake 

Increase in shoot length, root 

length, cob length, grain 

number, and iron content of 

stem, leaf, and seed. 

(75) 

Pseudomonas 

fluorescens 

Ground

nut 

ACC 

deaminase 

activity 

Improves groundnut seedling 

and protect the plant from 

saline stress 

(76) 

Pseudomonas 

fluorescens 2-79 

Turmeri

c 

Antibiotic Significantly increases the 

vigor index of turmeric plants, 

root length (10.70 cm), and 

shoot length (14.36 cm) and 

reduces the incidence of 

rhizome rot disease 

(77) 

Pseudomonas 

strain GRP3 

Mung 

bean 

Siderophore 

production 

Reduction in chlorotic 

symptoms of plants and also 

enhanced chlorophyll level 

(33) 

Rhizobium 

meliloti 

Cotton Nitrogen 

fixation, 

Phosphate 

solubilizatio

n 

Phosphorus content was 

significantly increased in 

plants 

(72) 

Rhizobium strain 

Rr2 

Chickp

ea 

IAA, GA 

production 

Increases plant biomass and 

nodulation 

(78) 

Sphingomonas 

sp. LK11  Serratia 

marcescens TP1 

Soybea

n 

Abscisic 

acid (ABA) 

and 

gibberline 

Stimulate shoot and root 

growths  

(72). 



Scopus Indexed Journal                                                                            September 2024 

 

 

 

656 

production 

 

Table 2: Effect of different PGPR (Plant Growth Promoting Rhizobacterial) Strains 

on Plants 

Table 3: 

 

Plant  pathogen/ disease PGPR strain Referenc

es 

Arugula Fusarium oxysporum, Fusarium 

moniliforme, Rhizoctonia solani, 

Aspergillus niger,Colletotrichum 

gloeosporioides,  

Colletotrichum falcatum, and 

Aspergillus flavus. 

 Bacillus. subtilis RMB5 (64) 

Coriander stem gall disease Azotobacter 

chroococcum, 

Pseudomonas putida) 

(48) 

Cucumber  Fusarium wilt 

Pythium aphanidermatum- Root and 

crown rot 

Pythium damping-off disease 

Paenibacillus sp. 300 

P. corrugata strain 13. 

Enterobacter cloacae 

(136),  

(135) , 

(137) 

Cucurbits Xanthomonas campestris, 

Pectobacterium carotovorum 

Bacillus subtilis (138), 

Maize Colletotrichum dematium, 

Rhizoctonia solani  

and Sclerotium rolfsii 

Pseudomonas strains 

GRP3A 

(115) 

Mung 

Bean 

Web Blight Disease Pseudomonas 

fluorescens (Psf 173) 

(139) 

Oil Palm Basal stem rot (BSR) P. aeruginosa (UPM 

P3) 

(74) 

Peanut  Rhizoctonia solani and Sclerotium 

rolfsii. 

Aspergillus flavus 

Bacillus subtilis isolate 

B4 

Bacillus velezensis 

LDO2 

(140) 

(63) 

Pepper  Damping off of pepper, 

Botrytis cinerea, Fusarium solani 

P. fluorescence  

Bacillus sp. 

(141),  

(142) 

Rice  Fusarium oxysporum, F. 

moniliforme, F. solani, Trichoderma 

atroviride and T. reesei, rice root-

knot nematode 

(Meloidogynegraminicola) 

Bacillus NH-100, 

 Bacillus sp. and 

Xanthomonas sp. 

(143),  

(123) 
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Sisal Sisal bole rot Burkholderia sp. (144) 

Soursop Colletotrichum gloeosporioides Bacillus atrophaeus (145) 

Soyabean Phytophthora sojae Paenibacillus sp.,-S1 (146) 

Strawberr

y 

Anthracnose disease Azospirillum 

brasilense 

(147) 

Sugarcane Colletotrichum falcatum Ochrobactruminterme

dium (TRD14),Bacillus 

sp. (RSC29 and KR91), 

Acinetobacter sp. 

(PK9)  

(148) 

Tobacco  Thielaviopsis basicola- black root rot 

Peronospora tabacina- blue mold of 

tobacco - 

Serratia marcescens, 

Bacillus pumilus 

(149), 

(131) 

 

Tomato  

Ralstonia solanacearum (RS) 

Fusarium Wilt 

Botrytis cinerea 

Bacillus 

amyloliquefaciens 

SQR-9 

P. fluorescens. 

Paenibacillus terrae 

AY-38 

(122) 

(150) 

(151) 

Turmeric Pythium aphanidermatum- rhizome 

rot disease 

Pseudomonas 

fluorescens 

(77) 

Wheat  Root rot disease- Gaeumannomyces 

graminis var. tritici. 

Pseudomonas 

fluorescens 2-79 

(152) 

Fusarium graminearum Paenibacillus 

sp.,Pantoea sp. 

(153) 

 

Table 3: Biological control by PGPR against certain diseases, and pathogens in 

different plants 
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