

Bioscene Volume- 21 Number- 02 ISSN: 1539-2422 (P) 2055-1583 (O) <u>www.explorebioscene.com</u>

The External Genitalia of Male and Female of Family Lygaeidae

Yashpreet Jhagta¹, Rashmi Gupta¹

¹Department of Biosciences (UIBT), Chandigarh University, Mohali, India

Abstract: The Hemiptera (true bugs) includes the Lygaeidae. The family is more frequently known as ground bugs or milkweed bugs than as seed bugs. Genitals play a major role in differentiating the insects, as genital parts are different in every species of insect. In, this paper, we are going to study the external genitals of male and female, by which we can observe the variations and difference among them.

Key Words - Lygaeidae, Genitals, Anatomy, Morphology

Introduction

Insectsof Lygaeidae family known by many names as seed bugs, ground bugs, or milkweed bugs (Burdfield et al., 2014) (Chandra and kushwaha 2014) (Chattopadhyay,2022) (Hamed et al., 2023) (Magsi et al., 2018).

Members of the Lygaeidae family are classified as members of the Hemiptera order and the Heteroptera suborder (Magsi et al., 2018) (Burdfield et al., 2014) (Hamed et al., 2023).

The sizes for Lygaeidae may vary from 1 to 12 millimeters (Magsi et al., 2018).From tiny to medium, oval - elongated to even cylindrical. A few subfamilies contain unusually shaped seeds that are often brown, dark brown, or black in color, but can also occasionally be red or reddish-brown (Magsi et al., 2018) (Saha et al., 2020) Most recognizable features of the Lygaeidae family include the presence of Y-shaped pattern on the scutellum and the impressed, frequently glossy transverse line across the calli (Henry etal., 2015) (Chattopadhyay, 2022).

Their four segments on the antennae and four segments on the beak identify them (Henry et al., 2015). (Hamed and Mawlood, 2023).

The external genitalia are crucial for identifying the species, the essential structures in the male genitalia are the pygophore, paramere, and aedeagus, and in the female genitalia, essential structures are the spermatheca and genital plate (Gupta et al., 2015) Ovipositorplays crucial role in female during copulation(Rodriguez and lucas 1998).

Male and Female Genitatia of Lygaeidae Family

To recognize and distinguish amongst insects, external genitalia play a crucial role. (Ashlock,1957) (Drake and Davis, 1959) (Scudder, 1959) (Gupta et al., 2015). Among the male genitalia, the pygophore, aedeagus, phallus and paramere are crucial structures (Gupta et al., 2015) (Cagatay, 1995). Among the female genitalia, ovipositor, spermatheca and genital plate plays a crucial role (gupta et al., 2015) (Drake and Davis, 1959).

In male - When the insect is not in copulation, abdominal segments eight through eleven usually get retracted within the seventh segment. These segments are all connected to or comprise the male genitalia (Ashlock, 1957). Only the ventral region of the male's eighth segment is sclerotized, and it has been significantly decreased. Normally, the ninth segment, or pygophore, and this segment retracts compactly into the seventh segment. The proctager, which sits on top of the pygophore, incorporates the tenth and eleventh segments, which are greatly shortened (Drake and Davis, 1959).

During mating, sperm are transferred by the male intromittent organ of the seed bug, which ends in a lengthy, sclerotized structure (Dougherty and Shuker, 2015)

In female - The seventh segment typically covers the base of the ovipositor and is extremely severely cleft mid-ventrally. The ninth and eighth tergites are in an almost ventricle plane due to ventral compression and the tenth segment disappears to become a little tubular sclerite that emerges from under the ninth tergum (Drake and Davis, 1959).

External Genitalia	Characteristics	References
Pygophore	The pygophore, also known as the	(Ashlock, 1957)
	genital capsule, is derived from the	
	ninth abdominal segment and	
	includes the remaining segments,	
	the phallus, and the parameres. It	
	has a cup-shaped opening, and in	
	the Lygaeidae, its anterior	
	boundary is always complete	
	dorsally, though it is often reduced	
	to a narrow bridge. The posterior	
	margin is either ridged or rounded	
	horizontally, but it is never	
	prolonged into processes like those	
	seen in many other families of	
	Heteroptera.	
	Normal coverage of the	
	pygophore's dorsal aperture is	

	provided by the proctiger, which is	
	comprised of the anus and leftover	
	abdominal segments. The dorsally	
	positioned tergum, a small tergite	
	next to the pygophore, appears to	
	be unique to the Lygaeinae family;	
	in other members of the family, it is	
	either lost completely or united	
	with the pygophore. The anus is	
	surrounded by segments ten and	
	eleven, additionally, could be	
	separated into sternal and tergal	
	sections, or whole rings. When the	
	phallus is erect, the proctiger folds	
	down into the vaginal atrium.	
Parameres	The parameres of the Lygaeidae	(Ashlock 1957)
	are symmetrical structures that are	
	paired and arise on the membrane	
	between the phallus and the	
	pygophore in the Lygopidae the	
	pygophore. In the hygaeidae, the	
	into two sostions: an apigal "blade"	
	that is traigally flattened and	
	and a basel "sherts" Beth	
	curred, and a basar shark. Both	
	could have distinct processes. In	
	particular, the snank frequently	
	includes processes before the	
	blade's base near its distal end.	
	Moreover, hairs or tiny tubercules	
	may be present on the surface of	
	the paramere. These features are	
	most likely sensory in nature.	
	Often, the inside curvature of the	
	blade has tiny teeth which are only	
	visible at very high magnification.	
	Almost hook-shaped parameres.	(Hamed and
		Mawlood, 2023)
Aedeagus	Important structure of genitalia,	(Gupta et al.,
	during copulation to transfer	2015)

	sperms.	
	Aedeagus is helpful for	(Piper, 1985)
	classification at the tribal and	
	subfamilial levels.	
Phallus	The proximal phallotheca and the	(Ashlock, 1957)
	distal endosoma, the two primary	
	parts of the heteropterans phallus,	
	also known as the intromittent	
	organ.	
	The sperm reservior and the	(O'Donnell,
	clasper, two components of the	1991)
	phallus, are also crucial structure in	
	male genitalia.The basal part of the	
	clasper is called the Shank, while	
	the distal curving portion is called	
	the Blade.	
Endophallus	It is split into vesical and	(Ashlock, 1957)
	conjunctival components and flows	
	entirely through the phallus' lumen.	
	Its division may be determined by	
	looking at the location of the	
	intricate ejaculatory reservoir,	
	which is located at the base of the	
	vesica.	
	The endosoma and the sclerotized	(O'Donnell,
	phallotheca, into which the	1991)
	remaining portion of the phallus fits	
	when it is not inflated, make up the	
	endophallus, also known as the	
	seminal duct. A distal vesica and	
	proximal conjunctiva are two	
	further divisions of the endosoma.	
Phallotheca	The area into which the endosoma	(Ashlock, 1957)
	invaginates when the phallus is	
	deflated and not in use is known as	
	the phallotheca, and it is roughly	
	cup shaped.	
Ductus Seminis	The seminal duct is a narrow tube	(Ashlock, 1957)
	that splits into conjunctival and	

	vesical components by the	
	ejaculatory reservoir. It travels	
	through the phallus' lumen and	
	ends at the secondary gonopore.	
	Whereas the ductus seminis visicae	
	is typically thicker, less flexible,	
	and frequently darkly pigmented,	
	the ductus seminis conjunctivae is	
	always narrow, flexible, and faintly	
	pigmented. What look to be tiny,	
	thicker annulations that make up	
	the walls of both duct components	
	are really near spirals. The process	
	gonopori, which is sometimes	
	coiled and varies widely in length,	
	is the distal end of the vesical	
	seminal duct that commonly breaks	
	free of the inflatable portions of the	
	phallus.	
Conjunctiva	The conjunctiva of the Lygaeidae is	(Ashlock, 1957)
	tubular and roughly elongated. It is	
	separated from the distal end by a	
	fold that develops at the base of the	
	ejaculatory reservoir when it is	
	pulled into the phallotheca.	
Vesica	Defined basally by the conjunctival	(Ashlock, 1957)
	fold, the vesica, or distal region of	
	the phallus, encompasses the	
	ejaculatory reservoir.	
Ejaculatory Reservoir	The ejaculatory reservoir is a	(Ashlock, 1957)
	complicated structure that is	
	permanently attached to the dorsal	
	wall of the vesica at its proximal	
	end.	

External Genitalia	Characteristics	References
Ovipositor	The base of the ovipositor is	(Drake and
	typically overlapped by the seventh	Davis, 1959)
	segment, which has a very deep	
	mid-ventral cleft. The ovipositor's	
	anterior end is stretched downward	
	and posteriorly into the position	
	when it is in use. The ovipositor's	
	mode of extension is unique to the	
	Lygaeidae family.	
	Male tapped her ovipositor with his	(Rodriguez and
	genital capsule during copulation.	Lucas, 1998)
	The female rolled her hind legs	
	backwards, stroking her abdomen	
	and wings while using her tibiae	
	and tarsi to push against his	
	abdomen and vaginal capsule. and	
	afterwards as the female's	
	ovipositor was penetrated by His	
	endophallus and sperm reservoir,	
	causing her to release a	
	spermatophore containing live	
	sperm during copulation.	
Genital Plate	The eight segment's	(Drake and
	gonocoxopodites, or valvifers, are	Davis 1959)
	observably big triangular sclerites.	
	Although they are not visible, the	
	gonocoxopodites of the ninth	
	segment are significantly smaller	
	and located below the segment's	
	ventral borders. The eighth	
	segment's gonapohyses, or	
	valvulae, unite ventrally by a	
	membrane and extend from the	
	anterior apex of the	
	gonocoxopodites.	
	Additionally, the inner rami,	
	sclerotized rods that extend from	

Table 2: showing the information about external genitalia of female

	the base of the ninth paratergites,	
	bind the first gonapophyses to their	
	ventral edges. The typical tongue-	
	in-groover mechanism seen in	
	heteropteron ovipositors joins the	
	second gonapophyses to the first	
	gonapophyses for the majority of	
	their length. Despite typically being	
	seen in other hemiptera, the third	
	gonapophyses cannot be identified.	
Female Genital	The female genital chamber is	(Drake and
Chamber	made up of a basic cuticular sac	Davis 1959)
	within. The common oviduct	
	extends anteriorly from it. and its	
	lumen extends posteriorly into the	
	ovipositor. The spermatheca is a	
	complicated tubular gland that	
	emerges from the female genital	
	chamber's ceiling. The female	
	genital chamber's roof differentiates	
	into a pouch-like structure near the	
	base of the spermatheca, from	
	which a groove extends posteriorly.	
	During copulation, this structure	
	may serve to direct the vesica of the	
	phallus into the spermatheca.	
	The paired ovaries' ovarioles	(Gschwentner
	terminate in a terminal filament that	and Tadler.
	extends distally. The	2000)
	oviductuslaterales is where the	
	ovarioles open closest to one	
	another. These unite to form an	
	oviductus communis, which then	
	opens into the genital chamber, or	
	bursa copulatrix.	
Spermatheca and	Two valvulae joined by a	(Gschwentner
Spermathecal Duct	membrane form the vaginal	and Tadler,
	opening. The spermathecal duct, or	2000)
	ductus receptaculi, creates a distal	

loop that is 1.5 turns in diameter as	
it exits the bursa copulatrix's	
dorsum and enters the	
receptaculum seminis or	
spermatheca.	
An insemination duct, distinct from	(Gary Chiang,
the spermathecal duct, is also	2010)
present in the proximal part of the	
spermathecal complex. The male	
intromittent organ can reach the	
spermatheca from the vagina	
without having to pass via the	
spermathecal duct due to the	
insemination duct.	
The proximal portion of the	(Gschwentner
receptaculumseminis(spermatheca)	and Tadler,
is a corkscrew-shaped, convoluted	2000)
tube. This tube's epithelial cells,	
cuticle type, and coloration are	
similar to those of the ductus	
receptaculi; nonetheless, the tube	
serves as a sperm storage space,	
making it a component of the	
receptaculum.	

Conclusion

Abdominal parts of male and female varies insect to insect, and external genitalia can never be the same of every insect. So, to get a better understanding ofinsects, evolutionary aspects, and function, external genitalia play an important role in it.

References

- 1. Ashlock, P.D., 1957. An investigation of the taxonomic value of the phallus in the Lygaeidae (Hemiptera-Heteroptera). Annals of the entomological Society of America, 50(4), pp.407-426.
- 2. Burdfield-Steel, E.R. and Shuker, D.M., 2014. The evolutionary ecology of the L ygaeidae. Ecology and Evolution, 4(11), pp.2278-2301.
- 3. Chandra, K. and Kushwaha, S., 2014. Ground bugs (Hemiptera: Lygaeidae) of Madhya Pradesh, with their distribution in India. Munis Entomology and Zoology, 9, pp.535-539.

- Chattopadhyay, S., 2022. New record of lygaeid bugs of genus Graptostethus Stal (Hemiptera: Heteroptera: Lygaeidae) on Dalbergia sissoo from Jharkhand, India.
- Dougherty, L.R. and Shuker, D.M., 2015. Natural breakage of the very long intromittent organ of the seed bug Lygaeussimulans (Heteroptera: Lygaeidae). European Journal of Entomology, 112(4), pp.818-823.
- 6. Drake, C.J. and Davis, N.T., 1959. A new subfamily, genus, and species of Lygaeidae (Hemiptera-Heteroptera) from Australia. Journal of the Washington Academy of Sciences, 49(1), pp.19-26.
- 7. Gary Chiang, R., 2010. A newly discovered sperm transport system in the female of Lygaeidae bugs. Physiological Entomology, 35(1), pp.87-92.
- 8. Gschwentner, R.O.B.E.R.T. and Tadler, A.N.D.R.E.A.S., 2000. Functional anatomy of the spermatheca and its duct in the seed bug Lygaeus simulans (Heteroptera: Lygaeidae). European Journal of Entomology, 97(3), pp.305-312.
- 9. Gupta, R., Sidhu, I.S. and Singh, D., 2015. Studies on two Indian species of genus Graptostethus Stal (Hemiptera: Lygaeidae).
- 10. Hamed, B.H. and Mawlood, N.A., 2023. Morphological study of the cotton seed bug, Oxycarenushyalinipennis (Costa, 1847)(Hemiptera: Lygaeidae) in some localities of Kurdistan region–Iraq. Kirkuk University Journal For Agricultural Sciences, 14(2), pp.1-8.
- 11. Henry, T.J., Dellapé, P.M. and de Paula, A.S., 2015. The big-eyed bugs, chinch bugs, and seed bugs (Lygaeoidea). True bugs (Heteroptera) of the Neotropics, pp.459-514.
- 12. Magsi, I.A., Khatri, I., Khoso, F.N., Shah, R.A., Brohi, M.U. and Dahri, Z.H., 2018. Some Lygaeid Bugs (Hemiptera: Lygaeidae) of Tandojam. University of Sindh Journal of Animal Sciences, 2(3), pp.19-22.
- 13. O'Donnell, J.E., 1991. A survey of male genitalia in lethaeine genera (Heteroptera: Lygaeidae: Rhyparochrominae). Journal of the New York Entomological Society, pp.441-470.
- 14. Piper*, R.G., 1985. The male genitalia of some Australian Rhyparochromini (Hemiptera: Lygaeidae). Australian Journal of Entomology, 24(1), pp.45-56.
- 15. Rodríguez, S. and Lucas, R., 1998. Copulation, fighting behavior and life cyle of Neopamerabilobata (Heteroptera: Lygaeidae). Revista de biología tropical, 46(3), pp.837-840.
- 16. Saha, P.C., Chandra, K., Kushwaha, S., Hassan, M.E., Biswas, B., Chakrabarty, A., Mukherjee, P. and Jahan, S., 2020. A preliminary study of family Lygaeidae from Andhra Pradesh, India. Records of the Zoological Survey of India, pp.175-188.

17. Scudder, G.G.E., 1959. The female genitalia of the Heteroptera: morphology and bearing on classification 1. Transactions of the Royal entomological Society of London, 111(14), pp.405-467.