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Abstract: Class imbalance is a critical challenge in artificial intelligence (AI) and
machine learning (ML), where the uneven distribution of class labels often results in
biased models and reduced predictive performance. This issue becomes more
pronounced in sensitive applications such as healthcare diagnostics, fraud detection,
cybersecurity, and autonomous systems, where minority class instances often represent
rare but highly significant events. This study explores the theoretical foundations of class
imbalance. It also reviews a range of strategies for addressing imbalance, including data-
level approaches (undersampling, oversampling, SMOTE and its variants), algorithm-
level techniques (cost-sensitive learning, threshold), and advanced frameworks such as
RESMOTE and ASEB. Furthermore, the role of deep learning in tackling imbalance is
examined, with a focus on transfer learning, attention mechanisms, and data
augmentation for improving minority class recognition. Comparative analyses across
different domains demonstrate how imbalance handling improves recall, precision, and
generalization, though challenges remain in high-stakes areas like medical prediction
and rare event detection. The findings emphasize that no single solution is universally
optimal; instead, domain-specific, hybrid, and context-aware methods provide the most
effective outcomes. This work contributes to the growing understanding of imbalance-
handling methodologies and underscores the need for continuous research to build fair,
reliable, and application-ready Al systems
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1.Introduction to Class Imbalance in AI and ML

Class imbalance [1] occurs when the distribution of categories in a dataset is
highly skewed, with one class containing significantly more samples than the
others. In such scenarios, conventional machine learning algorithms often fail to
recognize the minority class patterns effectively because they are optimized to
maximize overall accuracy. This imbalance leads to biased predictions where the
majority class dominates the decision boundaries, ultimately reducing the
reliability of the model in detecting rare but important cases. The problem is not
merely statistical; it directly affects the real-world usability and fairness of Al
systems.

The significance of class imbalance becomes clearer when viewed through
practical applications. In healthcare, detecting diseases [2] such as cancer or
heart conditions involves a small fraction of positive cases within massive amounts
of negative data. Similarly, in financial systems, fraudulent transactions are far
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fewer than legitimate ones, yet their detection is critical to preventing economic
loss. Cybersecurity also suffers from imbalance, where intrusions or attacks are
rare compared to normal activity, but missing them can have severe
consequences. In natural language processing (NLP), sentiment analysis tasks
may struggle with imbalanced class labels such as neutral versus highly
emotional text. These examples show that imbalance is not a niche issue but a
pervasive challenge across multiple domains.

The motivation to address this problem stems from the fact that in many of these
applications, the minority class holds the greatest importance. Misclassifying [3] a
single fraudulent transaction, undetected disease, or overlooked cyber-attack can
have much higher costs than misclassifying multiple majority class instances.
Therefore, accuracy alone is not a sufficient metric, as it masks the poor
performance on the minority class. A model that is genuinely useful must be able
to detect these critical minority patterns even in the presence of overwhelming
majority samples. This realization has pushed researchers to design specialized
learning techniques and evaluation strategies for imbalanced datasets.

In the context of artificial intelligence and machine learning, solving the
imbalance problem is essential for building trustworthy, generalizable, and fair
systems. Approaches such as data resampling, cost-sensitive learning, and
ensemble methods have been developed to improve minority class
representation during training. At the same time, the adoption of alternative
evaluation metrics, such as Fl-score, ROC-AUC, and precision-recall curves,
ensures a more realistic measurement of model performance. Addressing
imbalance is, therefore, not only a technical challenge but also a necessity to
ensure that Al applications can operate reliably in safety-critical and socially
impactful environments.

2. Theoretical Foundations of Class Imbalance

From a statistical perspective, class imbalance refers to a skewed distribution
where one class significantly outweighs another in terms of frequency. In binary
classification problems, this typically means the positive class (minority) has far
fewer samples than the negative class (majority). This skew creates a data
representation problem: the learning algorithm receives far more information
about one class, which dominates the training process. As a result, the model
tends to minimize overall error by focusing on the majority, while systematically
overlooking the minority, leading to a high bias problem.

The imbalance also affects the geometry of the feature space. When classes are
distributed unevenly, the decision boundaries formed by algorithms such as
logistic regression, decision trees, or neural networks are influenced by the
density of majority samples. For instance, if fraudulent transactions represent less
than 1% of the data, a classifier trained on raw data may form a boundary that
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labels nearly everything as legitimate to maximize accuracy. This behavior leads
to a poor generalization capability, particularly in detecting rare but meaningful
events.

Algorithms sensitive to class priors, such as Naive Bayes or probabilistic models,
are especially impacted by skewed distributions. Since they rely on prior
probabilities and likelihood estimates, the minority class probabilities may be
underestimated, further reducing predictive performance. Similarly, distance-
based [4] algorithms like k-nearest neighbors (KNN) may misclassify minority
samples because their neighbors are likely majority instances, pushing the
classification decision toward the dominant class. This imbalance-induced bias
highlights the importance of explicitly accounting for skewed data in algorithm
design.

The effect on decision boundaries becomes even more critical in complex
models such as support vector machines (SVM) or deep neural networks. In these
cases, the cost function is often optimized for global accuracy, which heavily
favors the majority. As the minority class contributes little to the total error, the
boundary may be shifted away from it, resulting in poor recall. In extreme
imbalance situations, the minority class may even be treated as outliers, and the
model may ignore them altogether. This explains why specialized imbalance-
aware methods are essential in high-stakes applications.

Evaluation metrics further complicate the problem. Accuracy, the most common
metric, becomes misleading in imbalanced datasets. For example, if only 1% of
the data belongs to the minority class, a model predicting all samples as the
majority class achieves 99% accuracy, despite failing to identify a single minority
instance. This creates a false impression of good performance while completely
neglecting the rare class. Metrics like precision, recall, Fl-score, and area under
the ROC or PR curve are therefore more reliable for imbalanced data evaluation,
as they better capture the trade-offs between detecting minority and majority
classes.

Another statistical challenge is that evaluation metrics themselves can be biased
under severe imbalance. For example, ROC curves may present an optimistic view
because true negatives dominate the calculation of the false positive rate.
Precision-recall curves, on the other hand, provide a clearer picture of minority
class performance since they directly measure success in identifying rare
samples. Theoretical understanding of these metric behaviors is essential for
researchers and practitioners to avoid drawing incorrect conclusions and to select
metrics that align with the real-world objectives of their application.

3.Impact of Class Imbalance on Machine Learning Models
One of the most direct impacts of class imbalance on machine learning models is
their bias toward the majority class. Since most algorithms are designed to
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minimize overall error, the majority class dominates the learning process. For
example, if a dataset has 95% negative cases and only 5% positive cases, a model
can achieve 95% accuracy simply by predicting every instance as negative. While
this looks impressive numerically, the model completely fails at identifying the
minority class, which is often the class of real interest. This majority-class bias
undermines the usefulness of the model in real-world applications.

The imbalance also affects the ability of models to generalize across unseen data.
When trained on heavily skewed datasets, models tend to overfit the majority
class patterns while underrepresenting minority features. As a result, the model
struggles to recognize new minority samples that appear in test data or
deployment. This lack of generalization typically shows up in low recall values for
the minority class. For instance, in fraud detection systems, a model may flag only
a small fraction of fraudulent transactions despite achieving high accuracy overall.
Precision and recall are particularly sensitive to imbalance. Precision measures
how many predicted positives are actually correct, while recall measures how
many actual positives are detected. In imbalanced datasets, precision often suffers
when resampling is used to boost minority detection, while recall collapses if the
algorithm ignores minority samples. This trade-off is crucial in applications like
medical diagnosis: a model that misclassifies many patients as healthy (low recall)
poses a higher risk than one that occasionally raises false alarms (lower
precision). Hence, the impact of imbalance must be carefully understood in terms
of task-specific trade-offs.

Case studies in healthcare provide strong evidence of these challenges. In heart
disease prediction using the BRFSS 2015 dataset, the original distribution is
approximately 90% healthy (majority) and 10% disease (minority). Logistic
regression applied directly to this data achieves nearly 90% accuracy, but recall
for the disease class is often below 40%, meaning more than half of the true
patients go undetected. This illustrates how imbalance distorts results, making
accuracy an unreliable metric in sensitive domains.

Another case is fraud detection [5] in financial systems. Datasets such as the
European credit card fraud dataset are highly imbalanced, with fraudulent cases
representing less than 0.2% of total transactions. Models like decision trees and
logistic regression trained without rebalancing predict nearly all transactions as
legitimate, reaching over 99% accuracy but less than 10% recall for fraud. In
contrast, ensemble models combined with resampling methods such as SMOTE
increase fraud recall to 70-80%, showing the importance of explicitly addressing
imbalance.

Cybersecurity is another domain where imbalance has severe consequences.
Intrusion detection datasets such as KDDCup’99 are heavily skewed toward
normal traffic, with rare attack types underrepresented. Models like Naive Bayes
or k-NN trained directly on such data classify nearly all traffic as normal, missing
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subtle but dangerous intrusions. Studies show that applying random forests with
synthetic oversampling improves detection rates of minority attack types by up to
50%, highlighting the sensitivity of machine learning models to skewed data
distributions.

Natural Language Processing (NLP) tasks also face imbalance, particularly in
sentiment analysis and text classification. In many datasets, neutral or majority
sentiments dominate, while rare emotions like anger or fear have very few
examples. Traditional classifiers such as SVM achieve high accuracy but perform
poorly in minority sentiment recognition, with Fl-scores dropping below 30% for
underrepresented emotions. Deep learning models such as Bi-LSTM combined
with oversampling methods have shown improvements, raising minority Fl-scores
to 60-70%, indicating that imbalance-aware strategies significantly enhance
generalization.

Comparisons across models further illustrate the differential impact of imbalance.
On imbalanced healthcare data, logistic regression achieves 90% accuracy but
only 38% recall, decision trees show 871% accuracy and 45% recall, while
ensemble methods like random forests with resampling increase recall to 70%
while keeping accuracy above 85%. Similarly, in fraud detection, random forests
outperform logistic regression, achieving 15% recall versus 12% recall after
applying synthetic balancing. These comparisons confirm that algorithms differ in
their resilience to imbalance, with ensemble and adaptive methods performing
better than traditional single models.

The risks of ignoring class imbalance extend beyond poor performance; they can
cause real-world harm. In healthcare, undetected patients may go untreated. In
finance, undetected fraud leads to significant monetary loss. In cybersecurity,
missed attacks compromise systems and data integrity. These risks make it clear
that addressing imbalance is not optional but essential for trustworthy Al
deployment. Without deliberate imbalance-handling strategies, models may
perform well on paper while failing disastrously in practice.

Overall, the impact of class imbalance on machine learning models is
multifaceted, influencing algorithmic bias, decision boundaries, precision-recall
trade-offs, and ultimately, application reliability. Case studies across domains
consistently show that traditional metrics like accuracy overestimate performance,
while advanced resampling, cost-sensitive learning, and ensemble methods
provide more reliable solutions. Understanding these impacts is crucial for
developing Al systems that not only learn effectively but also perform responsibly
in sensitive real-world environments.

4.Traditional Approaches to Handle Class Imbalance
One of the most common categories of solutions for class imbalance lies at the
data level, where the training dataset is modified before being passed to the
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algorithm. Undersampling is a straightforward method that reduces the number of
majority class samples to match the minority class. By balancing the distribution,
the model no longer favors the majority class, leading to improved recognition of
minority instances. However, this method discards a significant portion of the data,
which can cause a loss of valuable information and reduce the overall
representativeness of the training set.

Oversampling [6] is another widely used approach where instances of the
minority class are duplicated until the dataset becomes balanced. Unlike
undersampling, oversampling ensures that no majority class data is lost, but it can
lead to overfitting since the model may repeatedly see identical minority
samples. This limitation often results in decision boundaries that do not generalize
well to unseen data. Despite this, oversampling remains a practical method,
especially when data collection is costly or the minority class is extremely rare.

To address the shortcomings of simple oversampling, synthetic approaches such
as the Synthetic Minority Oversampling Technique (SMOTE) were introduced.
SMOTE generates new synthetic minority samples by interpolating between
existing minority points and their nearest neighbors. This strategy creates more
diverse training samples, reducing the risk of overfitting while improving decision
boundaries around the minority class. Over time, many variants of SMOTE, such as
Borderline-SMOTE, ADASYN, and Safe-Level-SMOTE, have been developed to
focus specifically on hard-to-learn or borderline minority instances, making
synthetic oversampling more adaptive.

While data-level methods adjust the dataset itself, algorithm-level strategies
modify the learning process to make models more sensitive to minority classes.
Cost-sensitive learning is one such technique where different misclassification
costs are assigned to classes. For example, misclassifying a diseased patient as
healthy may incur a higher penalty than the reverse. Algorithms trained with such
cost functions learn to minimize weighted errors, thereby paying more attention to
minority classes. This approach is especially useful in healthcare and fraud
detection, where false negatives have severe consequences.

Another algorithm-level [7] method is threshold adjustment. Most classifiers
output probability scores, and by default, the threshold for classification is set at
0.5. For imbalanced data, adjusting this threshold can improve minority detection.
Lowering the threshold, for instance, allows more instances to be classified as
positive, which increases recall for the minority class, though it may reduce
precision. This technique is simple to implement and does not require altering the
dataset or algorithm, making it a flexible option for practitioners.

Each of these traditional approaches comes with advantages and limitations. Data-
level methods are model-agnostic and can be applied before training any
classifier, but they may distort data distributions or increase computational costs.
Algorithm-level strategies, on the other hand, maintain the original dataset but
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require modifications in the training process, which may not always be
straightforward for all algorithms. In practice, the choice of method depends on
the specific dataset characteristics and application requirements, often requiring
a balance between precision, recall, and generalization.

Overall, traditional approaches such as undersampling, oversampling, SMOTE,
cost-sensitive learning, and threshold adjustment have provided the foundation
for tackling class imbalance. While they offer practical solutions and remain
widely used, their limitations have motivated the development of more advanced
methods, including ensemble frameworks and adaptive balancing techniques.
These newer methods attempt to overcome the weaknesses of traditional
strategies while maintaining their strengths, ensuring that Al and machine
learning models can perform reliably in real-world, imbalance-prone
environments.

5.Advanced Resampling and Ensemble-Based Techniques

As traditional resampling methods showed both potential and drawbacks, more
advanced strategies were developed to improve the handling of imbalanced data.
One such family is random ensemble methods, where multiple resampled
datasets are generated and used to train an ensemble of classifiers. For example,
RESMOTE (Random Ensemble SMOTE) [8] extends the original SMOTE idea
by applying synthetic oversampling across different subsets of the data and
combining multiple base learners. This diversity in resampling reduces
overfitting compared to simple SMOTE, while ensemble aggregation improves
stability. Empirical studies show that RESMOTE often achieves higher minority
recall than individual oversampling methods, particularly when integrated with
robust classifiers like random forests or gradient boosting.

Another set of strategies focuses on adaptive synthetic approaches, where the
emphasis is on improving the quality rather than the quantity of generated
samples. The Adaptive Synthetic Ensemble Balancer (ASEB) [9], for example,
identifies “hard-to-learn” minority instances by analyzing classifier disagreement
and then generates high-quality synthetic samples to replace or reinforce them.
Similarly, fuzzy-based resampling methods assign membership weights to
minority instances, prioritizing samples located in ambiguous or overlapping
regions of the feature space. These adaptive approaches outperform standard
SMOTE because they do not blindly generate synthetic points but rather focus on
strengthening decision boundaries where misclassifications are most likely to
occur.

Comparative results highlight the effectiveness of these methods. On imbalanced
healthcare datasets such as BRFSS 2015 for heart disease prediction, logistic
regression with basic SMOTE achieved around 65% recall for the minority class.
In contrast, RESMOTE combined with random forest improved minority recall to
nearly 78%, while ASEB further raised it to over 82% with better precision
balance. Similarly, in fraud detection datasets, standard oversampling yielded F1-
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scores below 60%, whereas RESMOTE ensembles pushed the Fl-score to 72%,
and ASEB-based adaptive frameworks exceeded 1715%, showing clear
improvements across both recall and precision.

Hybrid frameworks [10] represent another advanced line of solutions by
combining both data-level and algorithm-level techniques. These frameworks
integrate synthetic resampling methods with cost-sensitive learning or ensemble
classifiers to balance class representation while simultaneously optimizing
decision thresholds. For example, a hybrid approach may apply SMOTE to create
balanced training data and then use a cost-sensitive support vector machine to
further penalize misclassification of minority cases. This dual approach ensures
that both the dataset and the algorithm are tuned to handle imbalance, often
leading to stronger generalization in real-world applications.

The comparative advantages of these advanced methods are evident. Random
ensemble approaches like RESMOTE reduce overfitting risks by leveraging
diversity across multiple learners. Adaptive techniques like ASEB and fuzzy
resampling directly target weak regions of the feature space, resulting in higher
precision and recall compared to traditional SMOTE. Hybrid frameworks balance
the strengths of both data- and algorithm-level interventions, often outperforming
single-strategy methods. However, these approaches may come at a higher
computational cost and require careful parameter tuning, which can limit their
applicability in resource-constrained environments.

Effectiveness Distribution of Advanced Resampling and Ensemble Techniques

Hybrid Frameworks

Fuzzy-based Resampling

ReSMOTE (Random Ensemble)

ASEB (Adaptive Synthetic)

Fig 1. Effectiveness Distribution of Adavanced Resampling and Ensemble
Techniques.

The figure 1 gives the pie chart representation of Effectiveness Distribution of
Adavanced Resampling and Ensemble Techniques.
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Overall, advanced resampling and ensemble-based techniques represent a
significant improvement over traditional imbalance-handling methods. By
intelligently generating synthetic samples, leveraging ensemble diversity, and
combining complementary strategies, these methods achieve superior
performance in domains such as healthcare, finance, and cybersecurity.
Comparative studies consistently demonstrate higher recall, balanced precision,
and improved Fl-scores, validating their importance for building reliable and fair
Al systems in real-world scenarios where minority detection is critical.

6.Deep Learning and Class Imbalance

Deep learning models [11], particularly convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), are highly sensitive to class imbalance due
to their dependence on large volumes of data to learn hierarchical
representations. In imbalanced datasets, the majority class dominates the feature
extraction process, causing the network to develop biased filters and recurrent
patterns that fail to capture minority class features. For example, in medical
imaging, CNNs trained on imbalanced datasets may become proficient at
detecting normal cases while missing subtle indicators of rare diseases. Similarly,
RNNs used for sequential tasks like anomaly detection in time-series data may
overfit to normal sequences, underrepresenting rare abnormal events.

To address this, advanced deep learningstrategies such as transfer learning and
attention mechanisms have been introduced. Transfer learning leverages pre-
trained models trained on large, balanced datasets and fine-tunes them on the
imbalanced target domain, allowing minority classes to benefit from pre-learned
rich feature representations. Attention mechanisms, particularly in NLP and
computer vision, enhance the focus of neural networks on critical regions or
tokens, making it easier to highlight minority-class patterns even in imbalanced
settings. These techniques reduce the dependency on balanced data while
improving the interpretability and robustness of deep learning models.

Another promising direction lies in generative approaches [12], such as
Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs),
which create synthetic samples that mimic the distribution of minority data. In
medical imaging, GANs have successfully generated realistic tumor scans to
improve minority representation, while in fraud detection, synthetic sequences
generated by recurrent GANs enrich the training pool for rare fraudulent
activities. These generative methods outperform classical oversampling by
producing highly diverse and realistic data, thereby reducing overfitting and
enhancing generalization in deep networks.
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Table.l1 Comparative Results of Deep Learning Models under Class
Imbalance
Minority Class|Improvement with
Domain / Task |Model & Setting Metric (Recall /|Advanced
Fl-score) Technique
Medical
ediea CNN (baseline,
Imaging ) Recall: 38-40% |-
imbalanced data)
(Chest X-rays)
CNN + Data
Augmentation Recall: 68% +28%
(rotation, scaling)
CNN + GAN- ted
generated Recall: 81% +41%
samples
Skin . Lesion|CNN (trained from Fl-score: 65% B
Detection scratch)
Transfer Learning
Fl- 1 18% +13%
(ResNet fine-tuned) scoxe ° °
Fraud
LSTM (baseline,
Detection resam li(n a)se e, no Fl-score: 60% —
(Time-series) ping
LSTM + Recurrent GAN
(synthetic fraud|[F1-score: 76% +16%
sequences)
Sentiment Bi-LSTM (no attention) |Recall: 71%
Analysis (NLP) S
Bi-LSTM + Attention Recall: 82% +11%
+ -[|F1- : 0
Transformer Back-|Fl-score: 13% — +10%

Translation Aug.

83%

Table.l gives the Comparative Results of Deep Learning Models under Class

Imbalance.
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Performance Improvements in Deep Learning Models under Class Imbalance
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Fig 2. Performance Improvements in Deep Learning Under Class Imbalance.

The figure 2 gives the lines graph representation of Performance Improvements in
Deep Learning Under Class Imbalance.

Data augmentation[13] continues to play a critical role in handling imbalance
within deep learning frameworks. Beyond traditional techniques such as rotation,
flipping, and scaling in image tasks, more sophisticated augmentation strategies
like mixup, random erasing, and adversarial perturbations create varied minority
samples to strengthen decision boundaries. In NLP [14], augmentation methods
such as synonym replacement or back-translation enrich minority text classes.
Combined with cost-sensitive loss functions (e.g., focal loss), augmentation
ensures that CNNs, RNNs, and transformers do not disregard underrepresented
categories. Together, these methods demonstrate that deep learning can
overcome imbalance challenges when supported by adaptive augmentation,
generative modeling, and transfer-learning strategies.

1. Evaluation Metrics for Imbalanced Data

Accuracy [15] is one of the most widely used metrics in machine learning, but it
becomes highly misleading in the presence of imbalanced data. Since accuracy
measures the overall proportion of correctly classified samples, a model that
simply predicts all instances as belonging to the majority class can still achieve
very high scores. For example, in a dataset where 95% of cases are negative and
only 5% are positive, a classifier that predicts everything as negative will achieve
95% accuracy, yet it completely fails to recognize any of the positive cases. This
makes accuracy unsuitable as a sole performance metric for imbalance-sensitive
applications like fraud detection or medical diagnosis.

To address this limitation, more informative metrics such as precision, recall,
and Fl-score are used. Precision measures the proportion of predicted positives
that are actually correct, while recall measures the proportion of actual positives
that are detected. The Fl-score balances the trade-off between precision and
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recall, making it particularly useful when both false positives and false negatives
are costly. For instance, in healthcare, recall is prioritized to ensure that no
diseased patient is left undetected, while in spam detection, precision may be
more important to avoid misclassifying legitimate emails.

Beyond these basic measures, advanced evaluation metrics such as ROC-AUC
(Receiver Operating Characteristic - Area Under the Curve) and PR-AUC
(Precision-Recall - Area Under the Curve) [16] are widely used. ROC-AUC
evaluates the trade-off between true positive and false positive rates across
thresholds, but it can be misleading under severe imbalance because the majority
class dominates false positive counts. In contrast, PR-AUC is more informative for
highly imbalanced data as it directly reflects precision and recall trade-offs,
providing a clearer view of minority class performance.

Other metrics like G-mean (Geometric Mean) and MCC (Matthews
Correlation Coefficient) are designed specifically to handle imbalance. G-mean
evaluates the balance between sensitivity (recall) and specificity, rewarding
models that perform well on both classes. MCC is a correlation-based metric that
takes into account true positives, true negatives, false positives, and false
negatives, providing a balanced score even when the class distribution is skewed.
Both metrics are particularly valuable in evaluating classifiers where fairness
across classes is important, such as in cybersecurity and rare event detection.

Finally, metric preferences are often task-specific. In medical applications, recall
or sensitivity is critical because missing a positive case can have severe
consequences. In financial fraud detection, precision is crucial to avoid
overwhelming analysts with false alarms. For text classification, F1-score and PR-
AUC provide a better overall picture, while in real-time systems like intrusion
detection, G-mean ensures balanced performance across both majority and
minority classes. Thus, the choice of evaluation metric should be aligned with the
practical requirements of the application, rather than relying solely on accuracy.

Comparison of Evaluation Metrics under Class Imbalance
0.95

0.8

Metric Value
o
»
D

Accuracy Precision Recall Fl-score G-mean MCC

Fig 3. Comparison of Evaluation Metrics under Class Imbalance.
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The figure 3 states a bar chart comparing evaluation metrics for an imbalanced
dataset (95% negative, 5% positive).

e Accuracy (0.95) looks deceptively high, despite the model missing most
positives.

o Precision (0.50) shows that only half of predicted positives are correct.
e Recall (0.20) reveals that most actual positives are missed.

o Fl-score (0.29) balances precision and recall, giving a truer picture.

e G-mean (0.44) reflects poor balance between sensitivity and specificity.

e MCC (0.26) shows weak overall correlation, even though accuracy looked
strong.

ROC Curve Precision-Recall Curve

1.0 _'_J_‘_,—l"_l 10

08 0.8

0.6

Precision

04
04

True Positive Rate (Recall)

0.2

0.0 — ROC AUC = 0.98 — PRAUC = 0.90

0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6 08 1.0
False Positive Rate Recall

Fig 4. ROC and Precision-Recall Curve for class Imbalance.

The figure 4 shows the ROC and Precision-Recall Curve for class Imbalance. ROC
Curve is often looks optimistic in imbalanced datasets.PR Curvegives a more
realistic view of minority class performance.

8.Applications of Class Imbalance Handling in AI

Class imbalance handling plays a critical role in healthcare diagnostics and
disease prediction, where the number of healthy cases significantly outweighs
the diseased ones. For example, in heart disease, cancer, or diabetes prediction
datasets, the minority class often represents patients with the disease. Without
balancing strategies, models tend to predict most patients as healthy, missing rare
but crucial cases. Techniques such as SMOTE, ensemble-based oversampling, and
cost-sensitive learning ensure that models can detect these rare conditions with
higher precision and recall, directly impacting clinical decision-making and
saving lives.

In fraud detection and financial security, imbalance handling is equally vital
since fraudulent transactions are rare compared to legitimate ones. Standard
models often become biased toward the majority class, failing to detect
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suspicious activities. Advanced resampling methods like RESMOTE, adaptive
balancing, and anomaly detection algorithms help in learning subtle patterns of
fraud. Similarly, in cybersecurity and intrusion detection, malicious attacks
form a very small proportion of traffic compared to normal activities. Applying
imbalance-aware methods enables models to detect intrusions, phishing attempts,
and malware with higher reliability, preventing significant security breaches.
Beyond these, sentiment analysis and NLP tasks [17] also encounter
imbalance, as certain opinions or emotions (like extreme anger or rare sarcasm)
occur less frequently in text corpora. Handling imbalance ensures better
classification of these minority sentiments, improving applications such as
customer feedback analysis or mental health monitoring. Likewise, in
autonomous systems and rare event prediction, detecting anomalies such as
equipment failures, unexpected obstacles, or rare traffic events is crucial for
safety and performance. Here, hybrid frameworks combining data augmentation
and cost-sensitive deep learning allow Al systems to handle rare but impactful
events more effectively, ensuring robustness in real-world deployment.

Table.2 Comparing Challenge Severity vs. Effectiveness

Avbplication Challenge Severity (0-Solution Effectiveness (0-
PP 100) 100)

H
faalthca:.re 90 88

Diagnostics

Fraud Detection 85 92

Cybersecurity 80 85

Sentiment Analysis 10 18

Autonomous Systems |75 82

Table.2 gives the Comparing Challenge Severity vs. Effectiveness. The Challenge
Severity column indicates how strongly imbalance affects each domain.The
Solution Effectiveness column shows how well current AI/ML techniques handle
these issues.
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Class Imbalance Challenges vs Solutions Across Applications

—e— Challenge Severity
—&— Solution Effectiveness

90

85

80

Score (0-100)

75

70

Application Domains

Fig 5. Comparing Challenge Severity vs. Effectiveness of imbalance handling
across five major Al application domains

The figure 5 shows a line graph comparing challenge severity vs. effectiveness of
imbalance handling across five major Al application domains.

9.Conclusion

Class imbalance continues to be one of the most persistent challenges in artificial
intelligence and machine learning, as it directly affects model fairness, precision,
and generalization. From healthcare and finance to cybersecurity and
autonomous systems, the presence of skewed data distributions can cause models
to favor majority classes, leading to biased predictions and overlooked critical
cases. The exploration of theoretical foundations, model performance impacts,
and evaluation metrics makes it evident that conventional accuracy measures are
insufficient in imbalanced settings. Instead, metrics such as precision, recall, F1-
score, ROC-AUC, and PR-AUC provide a more reliable assessment of true
performance.

At the same time, the review of traditional and advanced solutions highlights the
growing effectiveness of hybrid frameworks that combine resampling, ensemble
learning, cost-sensitive methods, and deep learning innovations. Techniques like
RESMOTE, ASEB, and attention-based neural models demonstrate how adaptive
strategies can close the gap between challenge severity and solution
effectiveness across domains. However, the conclusion also emphasizes that
solutions must be domain-specific and context-aware, especially in high-risk
applications like medical diagnostics or rare event detection. Continued research
on scalable, explainable, and adaptive imbalance-handling methods will be vital
for building Al systems that are both robust and trustworthy.
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