
Scopus Indexed Journal                                                                      September 2025 

 

 

 

156 

 

 

 

 

 

 

Bioscene 

                                                                                                                       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bioscene 

Volume- 22 Number- 03 

ISSN: 1539-2422 (P) 2055-1583 (O) 

www.explorebioscene.com 

 

http://www.explorebioscene.com/


Scopus Indexed Journal                                                                      September 2025 

 

 

 

157 

Addressing Class Imbalance: Challenges and Solutions in AI and 

Machine Learning Applications 

 

Sasirekha R1, Kanisha B2 
1,2 Department of Computing Technologies, Faculty of Engineering and 

Technology, SRM Institute of Science and Technology, Kattankulathur Campus, 

Chengulpattu, India. 

Abstract: Class imbalance is a critical challenge in artificial intelligence (AI) and 

machine learning (ML), where the uneven distribution of class labels often results in 

biased models and reduced predictive performance. This issue becomes more 

pronounced in sensitive applications such as healthcare diagnostics, fraud detection, 

cybersecurity, and autonomous systems, where minority class instances often represent 

rare but highly significant events. This study explores the theoretical foundations of class 

imbalance. It also reviews a range of strategies for addressing imbalance, including data-

level approaches (undersampling, oversampling, SMOTE and its variants), algorithm-

level techniques (cost-sensitive learning, threshold), and advanced frameworks such as 

RESMOTE  and ASEB. Furthermore, the role of deep learning in tackling imbalance is 

examined, with a focus on transfer learning, attention mechanisms, and data 

augmentation for improving minority class recognition. Comparative analyses across 

different domains demonstrate how imbalance handling improves recall, precision, and 

generalization, though challenges remain in high-stakes areas like medical prediction 

and rare event detection. The findings emphasize that no single solution is universally 

optimal; instead, domain-specific, hybrid, and context-aware methods provide the most 

effective outcomes. This work contributes to the growing understanding of imbalance-

handling methodologies and underscores the need for continuous research to build fair, 

reliable, and application-ready AI systems 

Keywords- Class Imbalance, RESMOTE, ASEB, Precision, Generalization. 

1.Introduction to Class Imbalance in AI and ML 

Class imbalance [1] occurs when the distribution of categories in a dataset is 

highly skewed, with one class containing significantly more samples than the 

others. In such scenarios, conventional machine learning algorithms often fail to 

recognize the minority class patterns effectively because they are optimized to 

maximize overall accuracy. This imbalance leads to biased predictions where the 

majority class dominates the decision boundaries, ultimately reducing the 

reliability of the model in detecting rare but important cases. The problem is not 

merely statistical; it directly affects the real-world usability and fairness of AI 

systems. 

The significance of class imbalance becomes clearer when viewed through 

practical applications. In healthcare, detecting diseases [2] such as cancer or 

heart conditions involves a small fraction of positive cases within massive amounts 

of negative data. Similarly, in financial systems, fraudulent transactions are far 
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fewer than legitimate ones, yet their detection is critical to preventing economic 

loss. Cybersecurity also suffers from imbalance, where intrusions or attacks are 

rare compared to normal activity, but missing them can have severe 

consequences. In natural language processing (NLP), sentiment analysis tasks 

may struggle with imbalanced class labels such as neutral versus highly 

emotional text. These examples show that imbalance is not a niche issue but a 

pervasive challenge across multiple domains. 

The motivation to address this problem stems from the fact that in many of these 

applications, the minority class holds the greatest importance. Misclassifying [3] a 

single fraudulent transaction, undetected disease, or overlooked cyber-attack can 

have much higher costs than misclassifying multiple majority class instances. 

Therefore, accuracy alone is not a sufficient metric, as it masks the poor 

performance on the minority class. A model that is genuinely useful must be able 

to detect these critical minority patterns even in the presence of overwhelming 

majority samples. This realization has pushed researchers to design specialized 

learning techniques and evaluation strategies for imbalanced datasets. 

In the context of artificial intelligence and machine learning, solving the 

imbalance problem is essential for building trustworthy, generalizable, and fair 

systems. Approaches such as data resampling, cost-sensitive learning, and 

ensemble methods have been developed to improve minority class 

representation during training. At the same time, the adoption of alternative 

evaluation metrics, such as F1-score, ROC-AUC, and precision-recall curves, 

ensures a more realistic measurement of model performance. Addressing 

imbalance is, therefore, not only a technical challenge but also a necessity to 

ensure that AI applications can operate reliably in safety-critical and socially 

impactful environments. 

2. Theoretical Foundations of Class Imbalance 

From a statistical perspective, class imbalance refers to a skewed distribution 

where one class significantly outweighs another in terms of frequency. In binary 

classification problems, this typically means the positive class (minority) has far 

fewer samples than the negative class (majority). This skew creates a data 

representation problem: the learning algorithm receives far more information 

about one class, which dominates the training process. As a result, the model 

tends to minimize overall error by focusing on the majority, while systematically 

overlooking the minority, leading to a high bias problem. 

The imbalance also affects the geometry of the feature space. When classes are 

distributed unevenly, the decision boundaries formed by algorithms such as 

logistic regression, decision trees, or neural networks are influenced by the 

density of majority samples. For instance, if fraudulent transactions represent less 

than 1% of the data, a classifier trained on raw data may form a boundary that 
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labels nearly everything as legitimate to maximize accuracy. This behavior leads 

to a poor generalization capability, particularly in detecting rare but meaningful 

events. 

Algorithms sensitive to class priors, such as Naïve Bayes or probabilistic models, 

are especially impacted by skewed distributions. Since they rely on prior 

probabilities and likelihood estimates, the minority class probabilities may be 

underestimated, further reducing predictive performance. Similarly, distance-

based [4] algorithms like k-nearest neighbors (KNN) may misclassify minority 

samples because their neighbors are likely majority instances, pushing the 

classification decision toward the dominant class. This imbalance-induced bias 

highlights the importance of explicitly accounting for skewed data in algorithm 

design. 

The effect on decision boundaries becomes even more critical in complex 

models such as support vector machines (SVM) or deep neural networks. In these 

cases, the cost function is often optimized for global accuracy, which heavily 

favors the majority. As the minority class contributes little to the total error, the 

boundary may be shifted away from it, resulting in poor recall. In extreme 

imbalance situations, the minority class may even be treated as outliers, and the 

model may ignore them altogether. This explains why specialized imbalance-

aware methods are essential in high-stakes applications. 

Evaluation metrics further complicate the problem. Accuracy, the most common 

metric, becomes misleading in imbalanced datasets. For example, if only 1% of 

the data belongs to the minority class, a model predicting all samples as the 

majority class achieves 99% accuracy, despite failing to identify a single minority 

instance. This creates a false impression of good performance while completely 

neglecting the rare class. Metrics like precision, recall, F1-score, and area under 

the ROC or PR curve are therefore more reliable for imbalanced data evaluation, 

as they better capture the trade-offs between detecting minority and majority 

classes. 

Another statistical challenge is that evaluation metrics themselves can be biased 

under severe imbalance. For example, ROC curves may present an optimistic view 

because true negatives dominate the calculation of the false positive rate. 

Precision-recall curves, on the other hand, provide a clearer picture of minority 

class performance since they directly measure success in identifying rare 

samples. Theoretical understanding of these metric behaviors is essential for 

researchers and practitioners to avoid drawing incorrect conclusions and to select 

metrics that align with the real-world objectives of their application. 

3.Impact of Class Imbalance on Machine Learning Models 

One of the most direct impacts of class imbalance on machine learning models is 

their bias toward the majority class. Since most algorithms are designed to 
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minimize overall error, the majority class dominates the learning process. For 

example, if a dataset has 95% negative cases and only 5% positive cases, a model 

can achieve 95% accuracy simply by predicting every instance as negative. While 

this looks impressive numerically, the model completely fails at identifying the 

minority class, which is often the class of real interest. This majority-class bias 

undermines the usefulness of the model in real-world applications. 

The imbalance also affects the ability of models to generalize across unseen data. 

When trained on heavily skewed datasets, models tend to overfit the majority 

class patterns while underrepresenting minority features. As a result, the model 

struggles to recognize new minority samples that appear in test data or 

deployment. This lack of generalization typically shows up in low recall values for 

the minority class. For instance, in fraud detection systems, a model may flag only 

a small fraction of fraudulent transactions despite achieving high accuracy overall. 

Precision and recall are particularly sensitive to imbalance. Precision measures 

how many predicted positives are actually correct, while recall measures how 

many actual positives are detected. In imbalanced datasets, precision often suffers 

when resampling is used to boost minority detection, while recall collapses if the 

algorithm ignores minority samples. This trade-off is crucial in applications like 

medical diagnosis: a model that misclassifies many patients as healthy (low recall) 

poses a higher risk than one that occasionally raises false alarms (lower 

precision). Hence, the impact of imbalance must be carefully understood in terms 

of task-specific trade-offs. 

Case studies in healthcare provide strong evidence of these challenges. In heart 

disease prediction using the BRFSS 2015 dataset, the original distribution is 

approximately 90% healthy (majority) and 10% disease (minority). Logistic 

regression applied directly to this data achieves nearly 90% accuracy, but recall 

for the disease class is often below 40%, meaning more than half of the true 

patients go undetected. This illustrates how imbalance distorts results, making 

accuracy an unreliable metric in sensitive domains. 

Another case is fraud detection [5] in financial systems. Datasets such as the 

European credit card fraud dataset are highly imbalanced, with fraudulent cases 

representing less than 0.2% of total transactions. Models like decision trees and 

logistic regression trained without rebalancing predict nearly all transactions as 

legitimate, reaching over 99% accuracy but less than 10% recall for fraud. In 

contrast, ensemble models combined with resampling methods such as SMOTE 

increase fraud recall to 70–80%, showing the importance of explicitly addressing 

imbalance. 

Cybersecurity is another domain where imbalance has severe consequences. 

Intrusion detection datasets such as KDDCup’99 are heavily skewed toward 

normal traffic, with rare attack types underrepresented. Models like Naïve Bayes 

or k-NN trained directly on such data classify nearly all traffic as normal, missing 
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subtle but dangerous intrusions. Studies show that applying random forests with 

synthetic oversampling improves detection rates of minority attack types by up to 

50%, highlighting the sensitivity of machine learning models to skewed data 

distributions. 

Natural Language Processing (NLP) tasks also face imbalance, particularly in 

sentiment analysis and text classification. In many datasets, neutral or majority 

sentiments dominate, while rare emotions like anger or fear have very few 

examples. Traditional classifiers such as SVM achieve high accuracy but perform 

poorly in minority sentiment recognition, with F1-scores dropping below 30% for 

underrepresented emotions. Deep learning models such as Bi-LSTM combined 

with oversampling methods have shown improvements, raising minority F1-scores 

to 60–70%, indicating that imbalance-aware strategies significantly enhance 

generalization. 

Comparisons across models further illustrate the differential impact of imbalance. 

On imbalanced healthcare data, logistic regression achieves 90% accuracy but 

only 38% recall, decision trees show 87% accuracy and 45% recall, while 

ensemble methods like random forests with resampling increase recall to 70% 

while keeping accuracy above 85%. Similarly, in fraud detection, random forests 

outperform logistic regression, achieving 75% recall versus 12% recall after 

applying synthetic balancing. These comparisons confirm that algorithms differ in 

their resilience to imbalance, with ensemble and adaptive methods performing 

better than traditional single models. 

The risks of ignoring class imbalance extend beyond poor performance; they can 

cause real-world harm. In healthcare, undetected patients may go untreated. In 

finance, undetected fraud leads to significant monetary loss. In cybersecurity, 

missed attacks compromise systems and data integrity. These risks make it clear 

that addressing imbalance is not optional but essential for trustworthy AI 

deployment. Without deliberate imbalance-handling strategies, models may 

perform well on paper while failing disastrously in practice. 

Overall, the impact of class imbalance on machine learning models is 

multifaceted, influencing algorithmic bias, decision boundaries, precision-recall 

trade-offs, and ultimately, application reliability. Case studies across domains 

consistently show that traditional metrics like accuracy overestimate performance, 

while advanced resampling, cost-sensitive learning, and ensemble methods 

provide more reliable solutions. Understanding these impacts is crucial for 

developing AI systems that not only learn effectively but also perform responsibly 

in sensitive real-world environments. 

4.Traditional Approaches to Handle Class Imbalance 

One of the most common categories of solutions for class imbalance lies at the 

data level, where the training dataset is modified before being passed to the 
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algorithm. Undersampling is a straightforward method that reduces the number of 

majority class samples to match the minority class. By balancing the distribution, 

the model no longer favors the majority class, leading to improved recognition of 

minority instances. However, this method discards a significant portion of the data, 

which can cause a loss of valuable information and reduce the overall 

representativeness of the training set. 

Oversampling [6] is another widely used approach where instances of the 

minority class are duplicated until the dataset becomes balanced. Unlike 

undersampling, oversampling ensures that no majority class data is lost, but it can 

lead to overfitting since the model may repeatedly see identical minority 

samples. This limitation often results in decision boundaries that do not generalize 

well to unseen data. Despite this, oversampling remains a practical method, 

especially when data collection is costly or the minority class is extremely rare. 

To address the shortcomings of simple oversampling, synthetic approaches such 

as the Synthetic Minority Oversampling Technique (SMOTE) were introduced. 

SMOTE generates new synthetic minority samples by interpolating between 

existing minority points and their nearest neighbors. This strategy creates more 

diverse training samples, reducing the risk of overfitting while improving decision 

boundaries around the minority class. Over time, many variants of SMOTE, such as 

Borderline-SMOTE, ADASYN, and Safe-Level-SMOTE, have been developed to 

focus specifically on hard-to-learn or borderline minority instances, making 

synthetic oversampling more adaptive. 

While data-level methods adjust the dataset itself, algorithm-level strategies 

modify the learning process to make models more sensitive to minority classes. 

Cost-sensitive learning is one such technique where different misclassification 

costs are assigned to classes. For example, misclassifying a diseased patient as 

healthy may incur a higher penalty than the reverse. Algorithms trained with such 

cost functions learn to minimize weighted errors, thereby paying more attention to 

minority classes. This approach is especially useful in healthcare and fraud 

detection, where false negatives have severe consequences. 

Another algorithm-level [7] method is threshold adjustment. Most classifiers 

output probability scores, and by default, the threshold for classification is set at 

0.5. For imbalanced data, adjusting this threshold can improve minority detection. 

Lowering the threshold, for instance, allows more instances to be classified as 

positive, which increases recall for the minority class, though it may reduce 

precision. This technique is simple to implement and does not require altering the 

dataset or algorithm, making it a flexible option for practitioners. 

Each of these traditional approaches comes with advantages and limitations. Data-

level methods are model-agnostic and can be applied before training any 

classifier, but they may distort data distributions or increase computational costs. 

Algorithm-level strategies, on the other hand, maintain the original dataset but 
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require modifications in the training process, which may not always be 

straightforward for all algorithms. In practice, the choice of method depends on 

the specific dataset characteristics and application requirements, often requiring 

a balance between precision, recall, and generalization. 

Overall, traditional approaches such as undersampling, oversampling, SMOTE, 

cost-sensitive learning, and threshold adjustment have provided the foundation 

for tackling class imbalance. While they offer practical solutions and remain 

widely used, their limitations have motivated the development of more advanced 

methods, including ensemble frameworks and adaptive balancing techniques. 

These newer methods attempt to overcome the weaknesses of traditional 

strategies while maintaining their strengths, ensuring that AI and machine 

learning models can perform reliably in real-world, imbalance-prone 

environments. 

5.Advanced Resampling and Ensemble-Based Techniques 

As traditional resampling methods showed both potential and drawbacks, more 

advanced strategies were developed to improve the handling of imbalanced data. 

One such family is random ensemble methods, where multiple resampled 

datasets are generated and used to train an ensemble of classifiers. For example, 

RESMOTE (Random Ensemble SMOTE) [8] extends the original SMOTE idea 

by applying synthetic oversampling across different subsets of the data and 

combining multiple base learners. This diversity in resampling reduces 

overfitting compared to simple SMOTE, while ensemble aggregation improves 

stability. Empirical studies show that RESMOTE often achieves higher minority 

recall than individual oversampling methods, particularly when integrated with 

robust classifiers like random forests or gradient boosting. 

Another set of strategies focuses on adaptive synthetic approaches, where the 

emphasis is on improving the quality rather than the quantity of generated 

samples. The Adaptive Synthetic Ensemble Balancer (ASEB) [9], for example, 

identifies “hard-to-learn” minority instances by analyzing classifier disagreement 

and then generates high-quality synthetic samples to replace or reinforce them. 

Similarly, fuzzy-based resampling methods assign membership weights to 

minority instances, prioritizing samples located in ambiguous or overlapping 

regions of the feature space. These adaptive approaches outperform standard 

SMOTE because they do not blindly generate synthetic points but rather focus on 

strengthening decision boundaries where misclassifications are most likely to 

occur. 

Comparative results highlight the effectiveness of these methods. On imbalanced 

healthcare datasets such as BRFSS 2015 for heart disease prediction, logistic 

regression with basic SMOTE achieved around 65% recall for the minority class. 

In contrast, RESMOTE combined with random forest improved minority recall to 

nearly 78%, while ASEB further raised it to over 82% with better precision 

balance. Similarly, in fraud detection datasets, standard oversampling yielded F1-
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scores below 60%, whereas RESMOTE ensembles pushed the F1-score to 72%, 

and ASEB-based adaptive frameworks exceeded 75%, showing clear 

improvements across both recall and precision. 

Hybrid frameworks [10] represent another advanced line of solutions by 

combining both data-level and algorithm-level techniques. These frameworks 

integrate synthetic resampling methods with cost-sensitive learning or ensemble 

classifiers to balance class representation while simultaneously optimizing 

decision thresholds. For example, a hybrid approach may apply SMOTE to create 

balanced training data and then use a cost-sensitive support vector machine to 

further penalize misclassification of minority cases. This dual approach ensures 

that both the dataset and the algorithm are tuned to handle imbalance, often 

leading to stronger generalization in real-world applications. 

The comparative advantages of these advanced methods are evident. Random 

ensemble approaches like RESMOTE reduce overfitting risks by leveraging 

diversity across multiple learners. Adaptive techniques like ASEB and fuzzy 

resampling directly target weak regions of the feature space, resulting in higher 

precision and recall compared to traditional SMOTE. Hybrid frameworks balance 

the strengths of both data- and algorithm-level interventions, often outperforming 

single-strategy methods. However, these approaches may come at a higher 

computational cost and require careful parameter tuning, which can limit their 

applicability in resource-constrained environments. 

 

Fig 1. Effectiveness Distribution of Adavanced Resampling and Ensemble 

Techniques. 

The figure 1 gives the pie chart representation of Effectiveness Distribution of 

Adavanced Resampling and Ensemble Techniques. 
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Overall, advanced resampling and ensemble-based techniques represent a 

significant improvement over traditional imbalance-handling methods. By 

intelligently generating synthetic samples, leveraging ensemble diversity, and 

combining complementary strategies, these methods achieve superior 

performance in domains such as healthcare, finance, and cybersecurity. 

Comparative studies consistently demonstrate higher recall, balanced precision, 

and improved F1-scores, validating their importance for building reliable and fair 

AI systems in real-world scenarios where minority detection is critical. 

6.Deep Learning and Class Imbalance 

Deep learning models [11], particularly convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs), are highly sensitive to class imbalance due 

to their dependence on large volumes of data to learn hierarchical 

representations. In imbalanced datasets, the majority class dominates the feature 

extraction process, causing the network to develop biased filters and recurrent 

patterns that fail to capture minority class features. For example, in medical 

imaging, CNNs trained on imbalanced datasets may become proficient at 

detecting normal cases while missing subtle indicators of rare diseases. Similarly, 

RNNs used for sequential tasks like anomaly detection in time-series data may 

overfit to normal sequences, underrepresenting rare abnormal events. 

To address this, advanced deep learningstrategies such as transfer learning and 

attention mechanisms have been introduced. Transfer learning leverages pre-

trained models trained on large, balanced datasets and fine-tunes them on the 

imbalanced target domain, allowing minority classes to benefit from pre-learned 

rich feature representations. Attention mechanisms, particularly in NLP and 

computer vision, enhance the focus of neural networks on critical regions or 

tokens, making it easier to highlight minority-class patterns even in imbalanced 

settings. These techniques reduce the dependency on balanced data while 

improving the interpretability and robustness of deep learning models. 

Another promising direction lies in generative approaches [12], such as 

Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), 

which create synthetic samples that mimic the distribution of minority data. In 

medical imaging, GANs have successfully generated realistic tumor scans to 

improve minority representation, while in fraud detection, synthetic sequences 

generated by recurrent GANs enrich the training pool for rare fraudulent 

activities. These generative methods outperform classical oversampling by 

producing highly diverse and realistic data, thereby reducing overfitting and 

enhancing generalization in deep networks. 
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Table.1  Comparative Results of Deep Learning Models under Class 

Imbalance 

Domain / Task Model & Setting 

Minority Class 

Metric (Recall / 

F1-score) 

Improvement with 

Advanced 

Technique 

Medical 

Imaging 

(Chest X-rays) 

CNN (baseline, 

imbalanced data) 
Recall: 38–40% – 

 

CNN + Data 

Augmentation 

(rotation, scaling) 

Recall: 68% +28% 

 
CNN + GAN-generated 

samples 
Recall: 81% +41% 

Skin Lesion 

Detection 

CNN (trained from 

scratch) 
F1-score: 65% – 

 
Transfer Learning 

(ResNet fine-tuned) 
F1-score: 78% +13% 

Fraud 

Detection 

(Time-series) 

LSTM (baseline, no 

resampling) 
F1-score: 60% – 

 

LSTM + Recurrent GAN 

(synthetic fraud 

sequences) 

F1-score: 76% +16% 

Sentiment 

Analysis (NLP) 
Bi-LSTM (no attention) Recall: 71% – 

 Bi-LSTM + Attention Recall: 82% +11% 

 
Transformer + Back-

Translation Aug. 

F1-score: 73% → 

83% 
+10% 

    

Table.1 gives the Comparative Results of Deep Learning Models under Class 

Imbalance. 
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Fig 2. Performance Improvements in Deep Learning Under Class Imbalance.   

The figure 2 gives the lines graph representation of Performance Improvements in 

Deep Learning Under Class Imbalance.   

Data augmentation[13] continues to play a critical role in handling imbalance 

within deep learning frameworks. Beyond traditional techniques such as rotation, 

flipping, and scaling in image tasks, more sophisticated augmentation strategies 

like mixup, random erasing, and adversarial perturbations create varied minority 

samples to strengthen decision boundaries. In NLP [14], augmentation methods 

such as synonym replacement or back-translation enrich minority text classes. 

Combined with cost-sensitive loss functions (e.g., focal loss), augmentation 

ensures that CNNs, RNNs, and transformers do not disregard underrepresented 

categories. Together, these methods demonstrate that deep learning can 

overcome imbalance challenges when supported by adaptive augmentation, 

generative modeling, and transfer-learning strategies. 

7. Evaluation Metrics for Imbalanced Data 

Accuracy [15] is one of the most widely used metrics in machine learning, but it 

becomes highly misleading in the presence of imbalanced data. Since accuracy 

measures the overall proportion of correctly classified samples, a model that 

simply predicts all instances as belonging to the majority class can still achieve 

very high scores. For example, in a dataset where 95% of cases are negative and 

only 5% are positive, a classifier that predicts everything as negative will achieve 

95% accuracy, yet it completely fails to recognize any of the positive cases. This 

makes accuracy unsuitable as a sole performance metric for imbalance-sensitive 

applications like fraud detection or medical diagnosis. 

To address this limitation, more informative metrics such as precision, recall, 

and F1-score are used. Precision measures the proportion of predicted positives 

that are actually correct, while recall measures the proportion of actual positives 

that are detected. The F1-score balances the trade-off between precision and 
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recall, making it particularly useful when both false positives and false negatives 

are costly. For instance, in healthcare, recall is prioritized to ensure that no 

diseased patient is left undetected, while in spam detection, precision may be 

more important to avoid misclassifying legitimate emails. 

Beyond these basic measures, advanced evaluation metrics such as ROC-AUC 

(Receiver Operating Characteristic – Area Under the Curve) and PR-AUC 

(Precision-Recall – Area Under the Curve) [16] are widely used. ROC-AUC 

evaluates the trade-off between true positive and false positive rates across 

thresholds, but it can be misleading under severe imbalance because the majority 

class dominates false positive counts. In contrast, PR-AUC is more informative for 

highly imbalanced data as it directly reflects precision and recall trade-offs, 

providing a clearer view of minority class performance. 

Other metrics like G-mean (Geometric Mean) and MCC (Matthews 

Correlation Coefficient) are designed specifically to handle imbalance. G-mean 

evaluates the balance between sensitivity (recall) and specificity, rewarding 

models that perform well on both classes. MCC is a correlation-based metric that 

takes into account true positives, true negatives, false positives, and false 

negatives, providing a balanced score even when the class distribution is skewed. 

Both metrics are particularly valuable in evaluating classifiers where fairness 

across classes is important, such as in cybersecurity and rare event detection. 

Finally, metric preferences are often task-specific. In medical applications, recall 

or sensitivity is critical because missing a positive case can have severe 

consequences. In financial fraud detection, precision is crucial to avoid 

overwhelming analysts with false alarms. For text classification, F1-score and PR-

AUC provide a better overall picture, while in real-time systems like intrusion 

detection, G-mean ensures balanced performance across both majority and 

minority classes. Thus, the choice of evaluation metric should be aligned with the 

practical requirements of the application, rather than relying solely on accuracy. 

 

Fig 3. Comparison of Evaluation Metrics under Class Imbalance. 
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The figure 3 states a  bar chart comparing evaluation metrics for an imbalanced 

dataset (95% negative, 5% positive). 

• Accuracy (0.95) looks deceptively high, despite the model missing most 

positives. 

• Precision (0.50) shows that only half of predicted positives are correct. 

• Recall (0.20) reveals that most actual positives are missed. 

• F1-score (0.29) balances precision and recall, giving a truer picture. 

• G-mean (0.44) reflects poor balance between sensitivity and specificity. 

• MCC (0.26) shows weak overall correlation, even though accuracy looked 

strong. 

 

Fig 4. ROC and Precision-Recall Curve for class Imbalance. 

The figure 4 shows the ROC and Precision-Recall Curve for class Imbalance. ROC 

Curve is  often looks optimistic in imbalanced datasets.PR Curvegives a more 

realistic view of minority class performance. 

8.Applications of Class Imbalance Handling in AI 

Class imbalance handling plays a critical role in healthcare diagnostics and 

disease prediction, where the number of healthy cases significantly outweighs 

the diseased ones. For example, in heart disease, cancer, or diabetes prediction 

datasets, the minority class often represents patients with the disease. Without 

balancing strategies, models tend to predict most patients as healthy, missing rare 

but crucial cases. Techniques such as SMOTE, ensemble-based oversampling, and 

cost-sensitive learning ensure that models can detect these rare conditions with 

higher precision and recall, directly impacting clinical decision-making and 

saving lives. 

In fraud detection and financial security, imbalance handling is equally vital 

since fraudulent transactions are rare compared to legitimate ones. Standard 

models often become biased toward the majority class, failing to detect 
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suspicious activities. Advanced resampling methods like RESMOTE, adaptive 

balancing, and anomaly detection algorithms help in learning subtle patterns of 

fraud. Similarly, in cybersecurity and intrusion detection, malicious attacks 

form a very small proportion of traffic compared to normal activities. Applying 

imbalance-aware methods enables models to detect intrusions, phishing attempts, 

and malware with higher reliability, preventing significant security breaches. 

Beyond these, sentiment analysis and NLP tasks [17] also encounter 

imbalance, as certain opinions or emotions (like extreme anger or rare sarcasm) 

occur less frequently in text corpora. Handling imbalance ensures better 

classification of these minority sentiments, improving applications such as 

customer feedback analysis or mental health monitoring. Likewise, in 

autonomous systems and rare event prediction, detecting anomalies such as 

equipment failures, unexpected obstacles, or rare traffic events is crucial for 

safety and performance. Here, hybrid frameworks combining data augmentation 

and cost-sensitive deep learning allow AI systems to handle rare but impactful 

events more effectively, ensuring robustness in real-world deployment. 

Table.2 Comparing Challenge Severity vs. Effectiveness 

Application 
Challenge Severity (0–
100) 

Solution Effectiveness (0–
100) 

Healthcare 

Diagnostics 
90 88 

Fraud Detection 85 92 

Cybersecurity 80 85 

Sentiment Analysis 70 78 

Autonomous Systems 75 82 

 

Table.2 gives the Comparing Challenge Severity vs. Effectiveness. The Challenge 

Severity column indicates how strongly imbalance affects each domain.The 

Solution Effectiveness column shows how well current AI/ML techniques handle 

these issues. 



Scopus Indexed Journal                                                                      September 2025 

 

 

 

171 

 

Fig 5. Comparing Challenge Severity vs. Effectiveness of imbalance handling 

across five major AI application domains 

The figure 5 shows a line graph comparing challenge severity vs. effectiveness of 

imbalance handling across five major AI application domains. 

9.Conclusion 

Class imbalance continues to be one of the most persistent challenges in artificial 

intelligence and machine learning, as it directly affects model fairness, precision, 

and generalization. From healthcare and finance to cybersecurity and 

autonomous systems, the presence of skewed data distributions can cause models 

to favor majority classes, leading to biased predictions and overlooked critical 

cases. The exploration of theoretical foundations, model performance impacts, 

and evaluation metrics makes it evident that conventional accuracy measures are 

insufficient in imbalanced settings. Instead, metrics such as precision, recall, F1-

score, ROC-AUC, and PR-AUC provide a more reliable assessment of true 

performance. 

At the same time, the review of traditional and advanced solutions highlights the 

growing effectiveness of hybrid frameworks that combine resampling, ensemble 

learning, cost-sensitive methods, and deep learning innovations. Techniques like 

RESMOTE, ASEB, and attention-based neural models demonstrate how adaptive 

strategies can close the gap between challenge severity and solution 

effectiveness across domains. However, the conclusion also emphasizes that 

solutions must be domain-specific and context-aware, especially in high-risk 

applications like medical diagnostics or rare event detection. Continued research 

on scalable, explainable, and adaptive imbalance-handling methods will be vital 

for building AI systems that are both robust and trustworthy. 
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